Walla Walla University
Recent publications
For many animals, color change is a critical adaptive mechanism believed to carry a substantial energetic cost. Yet, no study to date has directly measured the energy expenditure associated with this process. We examined the metabolic cost of color change in octopuses by measuring oxygen consumption in samples of excised octopus skin during periods of chromatophore expansion and contraction and then modeled metabolic demand over the whole octopus as a function of octopus mass. The metabolic demand of the fully activated chromatophore system is nearly as great as an octopus’s resting metabolic rate. This high metabolic cost carries ecological and evolutionary implications, including selective pressures in octopuses that may influence the adoption of nocturnal lifestyles, the use of dens, the reduction of the chromatophore system in deep-sea species, and metabolic trade-offs associated with foraging.
italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">IEEE Standard Definitions for Use in Reporting Electric Generating Unit Reliability, Availability, and Productivity has recently been revised to extend the standard to variable energy resource (VER) generating facilities. The revision includes definitions of energy resource and resource unavailability, indexes that distinguish between equipment performance and the availability of a generator for system reliability analysis purposes, and generation-based reliability indexes for VER units corresponding to the traditional time-based indexes in previous versions of the standard. The revision also includes definition of critical period indexes, where the critical period is specified as hours of high system need. This paper describes the new terms and outlines issues with their definition.
Cnidarians face significant threats from ocean acidification (OA) and anthropogenic pollutants such as oxybenzone (BP-3). The convergence of threats from multiple stressors is an important area to investigate because of potential significant synergistic or antagonistic interactions. Real-time quantitative PCR was performed to characterize the expression profiles of twenty-two genes of interest (GOI) in sea anemones (Exaiptasia diaphana) exposed to one of four treatments: 1) 96 h of OA conditions followed by a 4 h exposure to 20 ppb BP-3; 2) Exposure to 4 h 20 ppb BP-3 without 96 h of OA; 3) Exposure to 96 h of OA alone; or 4) laboratory conditions with no exposure to BP-3 and/or OA. These 22 GOIs represent cellular processes associated with proton-dependent transport, sodium-dependent transport, metal cation binding/transport, extracellular matrix, amino acid metabolism/transport, immunity, and/or steroidogenesis. These 22 GOIs provide new insight into vulnerable cellular processes in non-calcifying anthozoans exposed to OA and BP-3. Expression profiles were categorized as synergistic, antagonistic, or additive of BP-3 in the presence of OA. Two GOIs were synergistic. Fifteen GOIs were antagonistic and the remaining five GOIs were additive in response to BP-3 in acidified seawater. A subset of these GOIs appear to be candidate biomarkers for future in situ investigations. In human health, proton-dependent monocarboxylate transporters (MCTs) are promising pharmacological targets and recognized as potential biomarkers. By comparison, these same MCTs appear to be targets of xenobiotic chemical pollutants in cnidarian physiology. In the presence of BP-3, a network of collagen synthesis genes are upregulated and antagonistic in their expression profiles. Cytochrome b561 is a critical protein required for collagen synthesis and in silico modeling demonstrates BP-3 binds in the pocket of cytochrome b561. Understanding the underlying molecular mechanisms of “drug-like” compounds such as BP-3 may lead to a more comprehensive interpretation of transcriptional expression profiles. The collective antagonistic responses of GOIs associated with collagen synthesis strongly suggests these GOIs should be considered candidate biomarkers of effect. GOIs with synergistic and additive responses represent candidate biomarkers of exposure. Results show the effects of OA and BP-3 are interactive with respect to their impact on cnidarians. This investigation offers mechanistic data that supports the expression profiles and underpins higher order physiological responses.
The virtual element method (VEM) allows discretization of the problem domain with polygons in 2D. The polygons can have an arbitrary number of sides and can be concave or convex. These features, among others, are attractive for meshing complex geometries. VEM applied to linear elasticity problems is now well established. Nonlinear problems involving plasticity and hyperelasticity have also been explored by researchers using VEM. Clearly, techniques for extending the method to nonlinear problems are attractive. In this work, a novel first‐order consistent VEM is applied within a static co‐rotational framework. To the author's knowledge, this has not appeared before in the literature with virtual elements. The formulation allows for large displacements and large rotations in a small strain setting. For some problems avoiding the complexity of finite strains, and alternative stress measures, is warranted. Furthermore, small strain plasticity is easily incorporated. The basic method, VEM specific implementation details for co‐rotation, and representative benchmark problems are illustrated. Consequently, this research demonstrates that the co‐rotational VEM formulation successfully solves certain classes of nonlinear solid mechanics problems. The work concludes with a discussion of results for the current formulation and future research directions.
Our current grading system assumes everyone starts at approximately the same place. This assumption presumes uniformity and impartiality to be inherent in our school system. We argue that this is not the case. This work explores the evolution of grading systems and the integration of new technologies in education, focusing on the development of more inclusive, dynamic, and adaptable teaching and assessment strategies. Key methods include diversified assessments, experiential learning approaches such as problem-based learning and the generated question learning model, and the incorporation of artificial intelligence (AI) in hyperflex learning strategies. The proposed work astutely identifies the critical flaws within the modern grading system and puts forth a compelling solution: shifting the focus towards assessing students’ improvement scores. This approach not only offers a progressive path forward, but also significantly enhances equity by holding students accountable for their knowledge gaps while promoting a more comprehensive evaluation. Additionally, creative engagement techniques, such as mock banking reward systems, are employed to enhance student motivation and participation. AI-facilitated formative assessments and personalized learning plans are also discussed, emphasizing the importance of real-time insights into student progress and the provision of flexible personalized learning environments. This comprehensive approach to education fosters student ownership of learning, promotes active participation, and equips students with essential lifelong learning skills. Moreover, a more accurate assessment of student learning and progress would be fostered, thus creating a paradigm shift from the currently flawed grading system.
Cephalopod populations have expanded over recent decades, both numerically and geographically. These expansions are particularly noteworthy because cephalopods are a taxon of quickly reproducing, high-metabolic rate predators that can have disproportionate impacts on naïve ecosystems. We report a new occurrence of an octopus species in 11.6 m of water in Burrows Bay, Washington, USA (coastal northeast Pacific Ocean). These newly identified individuals have several characteristics that clearly differentiate them from either of the two known octopus species that occur in shallow water within the area: Octopus rubescens and Enteroctopus dofleini . Instead, specimens superficially resemble Muusoctopus leioderma , a species which is found in the geographic area, but has never been reported at depths less than 70 m. Octopuses were collected for morphological and genetic comparison to known octopus species, focusing on other nominal Muusoctopus species. Genetic comparisons were conducted using three mitochondrial loci (12S ribosomal RNA, cytochrome oxidase subunit III, and cytochrome b) sequenced for the octopus along with two M. leioderma museum specimens, including the species' neotype. Observation of octopus behaviour revealed a unique burrowing behaviour. Morphology of the octopus found in Burrows Bay largely coincides with M. leioderma , with a few notable differences. Phylogenetic analysis revealed that Burrows Bay octopus forms a monophyletic clade with the M. leioderma neotype, but also suggested that M. leioderma is more closely related to Octopus californicus than to the other members of the genus Muusoctopus. These octopuses are thus attributed to M. leioderma but the generic placement of the species should be reviewed.
Simple Summary Octopuses are a diverse group of charismatic animals capable of adapting to a wide range of environments. Marine sediment habitats are the most pervasive environments on Earth and are largely dominated by burrowing organisms. Burrowing, the formation of semi-permanent structures below the surface of the sediment bed, is a novel behavior among octopuses, and the morphology facilitating burrowing in most octopuses is unknown. The goal of this study was to investigate the octopus keel, a fold of skin that protrudes from the lateral margin of the mantle in some species, as a burrowing-associated trait. The keel has been noted in several octopuses known to burrow and has been hypothesized to be associated with burrowing. We found that burrowing octopus species were more likely to also have keels, and that burrowing species of octopus, when held in aquaria, were more likely to lose their keels if they did not burrow. This article represents the first phylogenetic evidence of a connection between keels and burrowing, as well as evidence of the degeneration of keels in non-burrowing Muusoctopus leioderma. Abstract The octopus keel is a trait that has been hypothesized to be connected with burrowing in octopuses, but has never been explored in any detail. We investigated the association between these two traits using two approaches. First, we examined the phylogenetic correlation between the presence of a keel and known burrowing behavior in cirrate octopuses. Second, burrowing and non-burrowing captive Muusoctopus leioderma were evaluated for keel prominence to determine whether the keel is lost more rapidly in non-burrowing individuals. Pagel’s test for the coevolution of binary characteristics showed the model of best fit for the resulting phylogenetic tree to be one of evolutionary interdependence, and that non-burrowing Muusoctopus leioderma lost their keels over time, while burrowing individuals maintained their keels. Together, these results indicate the keel may be a trait associated with burrowing in octopuses.
Fracture mechanics-based failure theory has been used for analyzing structural integrity in Fitness-for-Service assessments of structures containing cracks. The stress intensity factors (SIFs) along the crack front are the key information in order to assess the remaining service life of a cracked component. In the case of a multiply cracked component, according to Fitness-for-Service (FFS) standards, these cracks must be first identified as to whether they are on the same cross-sectional plane, to be considered aligned cracks, or whether they are on parallel planes and thus be considered non-aligned parallel cracks. Extensive studies have been carried out on the mutual influence of adjacent parallel cracks. However, the scenario of a semi-elliptical surface crack under the influence of a quarter corner circular crack under remote bending has never been addressed. The present analysis addresses this problem by evaluating the effect of a corner circular crack of length a2 on the SIF of an adjacent nonaligned parallel semi-elliptical surface crack of length 2a1 and depth b1. A parametric study of the effect on the SIF as a function of the horizontal separation (S) and vertical gap (H) distances between the two cracks and the crack length ratio a2/a1 is conducted. Mode I SIFs are evaluated for a wide range of the normalized crack gaps of H/a2 = 0.4∼2, and normalized crack separation distances S/a2 = −0.5∼2. As in the case of tension, the presence of the corner quarter-circle crack affects the stress intensity factor along the semi-elliptical crack front. The present results clearly indicate that the effect of the corner quarter-circle crack on the surface semi-elliptical crack is weaker in the case of bending, when compared to the tension case. The largest percentage differences (5–22%) occur at the farthest crack tip of the semi-elliptical surface crack from the corner crack. The largest percent differences occur for a2/a1 < 1. In general, the deeper the semi-elliptical crack, the lower this percentage difference. When comparing maximal absolute values of the SIF, that normally occurs when b1/a1 = 1 for the cases undertaken. In general, the maximum values are found at the closest tip of the semi-elliptical crack to the corner quarter-circle crack. When b1/a1 is different from 1, then the maximum’s location can depend on the value of H/a2 and S/a2 irrespective of the ratio a2/a1. In these cases, the absolute maximum can occur in the vicinity of the deepest point or in the vicinity of the farthest crack tip of the semi-elliptical crack. As in the case of tension, in the case of bending the presence of the Corner Quarter-Circle Crack changes the stress intensity factor along the semi-elliptical crack front. The change reaches its maximum at the tip of the semi-elliptical crack closest to the corner crack, and it monotonically decreases moving away from this tip for the case b1/a1 = 1. For most of the cases b1/a1 < 1, the maximum occurs in the vicinity of the midpoint of the semi-elliptical crack and decreases monotonically in both directions from the midpoint.
Ocean acidification is the process by which the increase in atmospheric CO2 causes a corresponding increase in seawater CO2 and results in lowering the seawater pH. While this process is likely to have substantial impacts on marine ecosystems, research into the effect of ocean acidification has been limited by the high costs of quality tools to perform ocean acidification treatments in the lab. The Open Acidification Tank Controller is designed to reduce the cost of ocean acidification research by providing a device that can monitor and control pH and temperature of aquaria as well as or better than commercially available research-grade devices, but for less than $250 USD per aquarium. The device is centered around an Arduino Mega 2560 and is assembled into a 3D printed housing. It monitors pH using a BNC glass pH probe and temperature using a three-wire waterproof PT100 temperature sensor. The Open Acidification Tank Controller also features web-based parameter reporting, and data storage to a micro-SD card. This device can hold aquarium pH and temperature at given setpoints, ramp between two values over a user-defined time period, or produce a sine-wave fluctuation in values.
This Open-source Camera Trap for Organism Presence and Underwater Surveillance (OCTOPUS) was designed to operate as a motion activated camera trap, deployable at depths of up to 800 ft for ∼72hr deployments. The core components of the OCTOPUS are built off a Raspberry Pi 3B+ with a custom PCB hat which operates a strobe lighting system and a high definition Arducam camera. When an appropriate threshold of motion is detected, the OCTOPUS captures a high-definition image of the subject. Field trials for this system demonstrated its use for cryptic benthic organisms, specifically small octopus (Octopus rubescens). The OCTOPUS collected data on several species allowing the observation and quantification of interspecific and conspecific interactions. This system unlocks the potential of autonomous underwater data collection for a wide range of applications, from species specific observations to large scale ecological assessments.
Elevated atmospheric CO2 as a result of human activity is dissolving into the world’s oceans, driving a drop in pH, and making them more acidic. Here we present the first data on the impacts of ocean acidification on a bathyal species of octopus Muusoctopus leioderma. A recent discovery of a shallow living population in the Salish Sea, Washington United States allowed collection via SCUBA and maintenance in the lab. We exposed individual Muusoctopus leioderma to elevated CO2 pressure (pCO2) for 1 day and 7 days, measuring their routine metabolic rate (RMR), critical partial pressure (P crit ), and oxygen supply capacity (α). At the time of this writing, we believe this is the first aerobic metabolic data recorded for a member of Muusoctopus. Our results showed that there was no change in either RMR, P crit or α at 1800 µatm compared to the 1,000 µatm of the habitat where this population was collected. The ability to maintain aerobic physiology at these relatively high levels is discussed and considered against phylogeny and life history.
In many introductory physics classes, diffraction of light is introduced first, then more advanced diffraction topics such as x-ray diffraction, Bragg’s law, and crystallography are covered. Since using x-rays raises safety concerns and atomic spacing in a crystal is not easy to change, microwaves with macroscopic crystals have been used to study Bragg’s law in the undergraduate laboratory. A number of scientific supply companies, including PASCO and 3B Scientific, sell 10-GHz microwave optics systems. However, using these systems within the parameters of the manufacturer’s procedure for a Bragg diffraction lab poses some challenges. First, the receiver and transmitter must be manually positioned, making the data collection process slow. Second, the microwaves should be plane waves and the receiver should be located beyond the far-field limit. These 10-GHz microwave optics systems are low power, making them safe for lab use, but this limits the crystal size and working distance between the transmitter and receiver to under 1000 mm. The experimental setup suggested by the manufacturer separates the transmitter and receiver by about 10 wavelengths from the center of rotation. While the bells on the transmitter and receiver help with producing plane waves, it is expected that ideal conditions for Bragg’s law are not completely fulfilled. Indeed, the experiment guide warns of errors up to 15% and unexplained peaks in the data.
There is a growing interest in non-dairy alternatives fueled by concerns about personal health and the health of the planet. Sales of non-dairy frozen desserts have increased along with other non-dairy alternatives such as plant-based beverages, cheeses, yogurts and creamers. The aim of this study was to conduct a cross-sectional survey of plant-based frozen desserts to determine their nutritional content. A total of 358 plant-based frozen desserts were analyzed from the nutrition label listed on the commercial container. The various products were based upon coconut (n = 126), oat milk (n = 63), almonds (n = 42), cashews (n = 25), soy (n = 11), macadamia milk (n = 9), olive oil (n = 8), faba bean (n = 8), canola oil (n = 8), rice milk (n = 6), sunflower milk (n = 6), avocado (n = 5), pea protein (n = 5) and various fruits, nuts and mixed blends (n = 36). While 90% of the frozen desserts had high sugar levels, 73% had high levels of saturated fat (due to the presence of coconut oil) and only one in four had high levels of fat. None of the products were fortified with calcium, vitamin D or B12, but one in six products had iron levels/serving of at least 10% of Daily Value (DV) and 1 in 6 had protein levels/serving similar to regular dairy ice cream. Food manufacturers need to produce new non-dairy frozen desserts that are more nutritious, since few brands (such as those based upon avocado, apple and hemp protein, or fava bean) presently provide consumers choices with lower saturated fat and sugar levels and/or higher protein levels.
The Open Science movement has increased dramatically in popularity with deserved calls to action around transparency, access to resources, and inclusion in our field. However, its practical applications within experimental design have been slow to uptake, with researchers unsure where to even start with the dizzying array of open source hardware and software solutions available. The perceived time investment and unknown cost, especially in implementing open source hardware, has stagnated the implementation of inexpensive experimental solutions, but we sought to increase awareness to lower the barrier to participation in this space. While there are countless technical and financial advantages to integrating open source solutions into every biologist's experimental design, we put an emphasis on the “people” part of the equation in our symposium. This symposium championed innovative experimental designs by early career SICB researchers across all fields of biology, from plants to animals, in the lab or in the field, or even virtually engaging with the public and students. The open science movement operates within community norms that champion transparency, continuous development, and collaboration. These values are congruent with the priorities of reducing barriers to participation in science, and we hope our symposium's collection of open source solutions encourages readers to adopt these or other innovative designs into their own experimentation.
Synopsis Dens are a crucial component of the life history of most shallow water octopuses. However, den usage dynamics have only been explored in a few species over relatively short durations, and Octopus rubescens denning behavior has never been explored in situ. We built four underwater camera traps to observe the behavior of O. rubescens in and around their dens. To distinguish individuals, octopuses were captured and given a unique identifiable visible implant elastomer tag on the dorsal side of their mantle. After being tagged and photographed, each octopus was released back to its original capture site within its original den bottle. The site is unique in that octopuses reside almost exclusively in discarded bottles, therefore aiding in locating and monitoring dens. Motion-activated cameras were suspended in a metal field-of-view above bottle dens of released octopuses to observe den-associated behaviors. Cameras were regularly retrieved and replaced to allow continuous monitoring of den locations in 71 h intervals for over a month. We found that O. rubescenswas primarily active during the day and had frequent interactions with conspecifics (other members within the species). We also found that rockfish and red rock crabs tended to frequent den locations more often when octopuses were not present, while kelp greenling both visited dens more frequently and stayed longer when octopuses were present. Our results, demonstrate the utility of motion-activated camera traps for behavioral and ecological studies of nearshore mobile organisms.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
662 members
David L. Cowles
  • Biological Sciences
Qin Ma
  • Faculty of Engineering
Douglas Logan
  • School of Engineering
Cecilia J. Brothers
  • Biological Sciences
Information
Address
United States