Vlaams Instituut Voor De Zee
  • Ostend, West-Vlaanderen, Belgium
Recent publications
Biological ocean science has a long history; it goes back millennia, whereas the related data services have emerged in the recent digital era of the past decades. To understand where we come from—and why data services are so important—we will start by taking you back to the rise in the study of marine biology—marine biodiversity—and its key players, before immersing ourselves in the data life cycle, past and present joint global initiatives, and systems that allow(ed) scientists to more easily access biological data, online services through some simple keyboard strokes, and the many challenges we still encounter on a daily basis when dealing with these types of data.
The ocean is a key component of the Earth's dynamics, providing a great variety of ecosystem services to humans. Yet, human activities are globally changing its structure and major components, including marine biodiversity. In this context, the United Nations has proclaimed a Decade of Ocean Science for Sustainable Development to tackle the scientific challenges necessary for a sustainable use of the ocean by means of the Sustainable Development Goal 14 (SDG14). Here, we review how Acoustic animal Tracking, a widely distributed methodology of tracking marine biodiversity with electronic devices, can provide a roadmap for implementing the major Actions to achieve the SDG14. We show that acoustic tracking can be used to reduce and monitor the effects of marine pollution including noise, light, and plastic pollution. Acoustic tracking can be effectively used to monitor the responses of marine biodiversity to human‐made infrastructures and habitat restoration, as well as to determine the effects of hypoxia, ocean warming, and acidification. Acoustic tracking has been historically used to inform fisheries management, the design of marine protected areas, and the detection of essential habitats, rendering this technique particularly attractive to achieve the sustainable fishing and spatial protection target goals of the SDG14. Finally, acoustic tracking can contribute to end illegal, unreported, and unregulated fishing by providing tools to monitor marine biodiversity against poachers and promote the development of Small Islands Developing States and developing countries. To fully benefit from acoustic tracking supporting the SDG14 Targets, trans‐boundary collaborative efforts through tracking networks are required to promote ocean information sharing and ocean literacy. We therefore propose acoustic tracking and tracking networks as relevant contributors to tackle the scientific challenges that are necessary for a sustainable use of the ocean promoted by the United Nations. The United Nations has proclaimed a Decade of Ocean Science for Sustainable Development. Here, we review how Acoustic animal Tracking (AT), a widely distributed methodology of tracking marine biodiversity with electronic devices, can provide a roadmap for implementing the major Actions to achieve the Sustainable Development Goals of life below water. This review provides a list of specific examples in how AT can help reaching most Targets by providing cutting‐edge scientific data.
Optical imaging devices such as the Video Plankton Recorder (VPR) harness unique capabilities to perform in situ observations and observe planktonic organisms in their natural environmental context. However, applying this technology in shallow and turbid coastal waters comes with a number of challenges. Depending on the research goal, methodological choices need to be made regarding the appropriate towing procedure and instrument settings, like magnification or field of view. In addition, limitations can be expected related to the physical characteristics of the water column, more specifically regarding suspended matter concentration and turbidity. To inform VPR users on the possibilities and limitations of the device in shallow and turbid coastal waters, this paper evaluates a number of specific deployment procedures in the Belgian part of the North Sea (BPNS). For three different towing procedures the practical feasibility, characteristics and output are assessed and the assets and liabilities for each of the tow types are discussed. A Z-shaped and a clover-shaped tow type are seen as best fit for detailed characterization of the plankton community of a limited geographical area. A straight tow type is more suitable for plankton studies over a larger area, with the potential to capture local plankton abundance peaks and to determine the relation with the spatial variation of the environmental conditions. The capacity of the various VPR magnification settings to capture specific plankton taxa or size groups, was tested during four straight line transects with different magnifications. The highest magnification can be used for organisms from 0.3 to 0.7 mm while the low magnification allows to observe larger organisms within the size range of 1.0 to 3.8 mm. Finally, the boundary conditions for the deployment of the VPR related to the turbidity of the water column were defined and the implications for deployment within the study area were investigated. This study shows that high turbidity values over 6.2 NTU inhibit the collection of useable data, complicating the VPR's application in many coastal and transitional waters.
Plankton comprises a large diversity of organisms, from pico-to macro-sized classes, and spans several trophic levels, whose population dynamics are characterized by a high spatio-temporal variability. Studies integrating multiple plankton groups, in respect to size classes and trophic levels, are still rare, which hampers a more thorough description and elucidation of the full complexity of plankton dynamics. Here, we present a study on the spatial variability of five in-situ monitored plankton components, ranging from bacteria to meso-zooplankton, and using a complementary set of molecular, chemical and imaging tools, with samples obtained during the phytoplankton spring bloom in the hydrodynamically complex Southern Bight of the North Sea. We hypothesized that while generally recognized spatial gradients in e.g. salinity, turbidity and nutrients will have a strong impact on plankton spatial distribution patterns, interactions within the plankton compartment but also lag effects related to preceding bloom-related events will further modulate spatial structuring of the plankton. Our study indeed revealed an overriding imprint of regional factors on plankton distribution patterns. The dominant spatial pattern mainly reflected regional differences in dissolved inorganic nutrients and particulate matter concentrations related to differences in phytoplankton bloom timing between the two main regions of freshwater influence, the Thames and the Scheldt-Rhine-Meuse. A second major pattern corresponded to the expected nearshore-offshore gradient, with increasing influence of low turbidity and low nutrient Atlantic waters in the offshore stations. Environmental forcing on specific plankton groups and inter-plankton relationships also appeared to drive plankton distribution. Although the marine plankton comprises heterogeneous functional groups, this study shows that multiple planktonic ecosystem components can be parts of common spatial gradients and that often neglected small planktonic organisms can be key drivers of such gradients. These analytical outcomes open questions on regional and seasonal reproducibility of the highlighted gradients.
Micro- and nanoplastics (MNPs) pollution is an environmental issue of concern, but current effect assessments often overlook realistic scenarios, and a contextualised vision of the magnitude of the impact of complex mixtures of MNPs together with other environmental stressors is urgently needed. Plastic particles exist in the environment as complex mixtures of particles from various size ranges, shapes, and polymer types, but the potential effects of realistic MNPs mixtures and concentrations are still poorly understood, and current effects data is insufficient to produce high quality risk assessments. Organisms exposed to MNPs in the marine environment are simultaneously subjected to global change driven stressors, among others, such as ocean warming (OW), marine heat waves (MHW), ocean acidification (OA), and ocean deoxygenation (OD). Stress responses due to MNPs ingestion can, in particular cases, lead to a metabolic and energetic cost, which may be aggravated in the case of organisms already vulnerable due to simultaneous exposure to global change-related stressors. In this work, we discuss how MNPs effects could be assessed while considering plastics complexity and other environmental stressors. We identify knowledge gaps in MNPs assessments, acknowledge the importance of environmental data acquisition and availability for improved assessments, and consider how mechanistic ecological models can be used to unveil and to increase our understanding of MNPs effects on marine ecosystems. Understanding the importance of plastic pollution in the context of other stressors such as climate change and their potential combined effects on marine ecosystems is important. The assessment of realistic effects of MNPs on all biological levels of organisation should consider the co-occurrence in the environment of global change-related stressors. Even though the number of studies is still limited, recent effect assessment reports indicate that the MNPs interaction with global change stressors can affect processes in organisms such as ingestion and digestion, energy allocation, growth, and fecundity. The potential impact of this interaction at population levels is largely unknown and requires increased attention from the research community, to provide information to stakeholders on the vulnerability of marine species and ecosystems now and under future environmental conditions.
The transition from marine to freshwater is a challenging task for juvenile eels. This critical step in the early eels’ life is preceded by a metamorphosis from the oceanic larval to the continental glass eel stage, requiring major energy‐demanding morphological, physiological and behavioural modifications during which time these animals do not feed. The success of the glass eels’ inland migration after metamorphosis will largely depend on remaining energy levels, which only can be supplemented by resuming food uptake. Although it is crucial for their survival and the maintenance of the population, the feeding behaviour of glass eels is still an understudied aspect of the eels’ complex life cycle. Many uncertainties about the phenology, diet, potential prey preferences and their relation with migration modus (migratory vs. sedentary) still remain. In this study, we analysed the stomach and gut contents of 458 European glass eels (Anguilla anguilla L. 1758) captured in a drainage canal connecting a small mesotidal estuary with an adjacent polder area during the spring migration seasons of 2016 and 2017. We demonstrated that although glass eels started feeding briefly upon arrival in the estuary, food uptake for early arrivals was restricted to a minority that sparsely feed on detritus and some wormlike benthic invertebrates. Along the season, food uptake intensified eventually engaging all glass eels and their dietary palette diversified including a wide array of planktonic and benthic organisms. Crustacean plankton (mainly cyclopoid copepods) was an important part of the glass eel diet while benthic oligochaetes were less abundant as food source in spite of their high presence in the sediments. No clear differences in feeding behaviour could be observed between migratory and sedentary glass eels. This study showed that glass eels are able to use highly artificial and dynamic drainage canals as feeding ground during their critical marine/freshwater transition. This outcome is also a plea to improve the accessibility of alternative (unnatural) migration routes between the ocean and suitable freshwater growth habitats for the European eel.
Historical biodiversity documents comprise an important link to the long-term data life cycle and provide useful insights on several aspects of biodiversity research and management. However, because of their historical context, they present specific challenges, primarily time- and effort-consuming in data curation. The data rescue process requires a multidisciplinary effort involving four tasks: (a) Document digitisation (b) Transcription, which involves text recognition and correction, and (c) Information Extraction, which is performed using text mining tools and involves the entity identification, their normalisation and their co-mentions in text. Finally, the extracted data go through (d) Publication to a data repository in a standardised format. Each of these tasks requires a dedicated multistep methodology with standards and procedures. During the past 8 years, Information Extraction (IE) tools have undergone remarkable advances, which created a landscape of various tools with distinct capabilities specific to biodiversity data. These tools recognise entities in text such as taxon names, localities, phenotypic traits and thus automate, accelerate and facilitate the curation process. Furthermore, they assist the normalisation and mapping of entities to specific identifiers. This work focuses on the IE step (c) from the marine historical biodiversity data perspective. It orchestrates IE tools and provides the curators with a unified view of the methodology; as a result the documentation of the strengths, limitations and dependencies of several tools was drafted. Additionally, the classification of tools into Graphical User Interface (web and standalone) applications and Command Line Interface ones enables the data curators to select the most suitable tool for their needs, according to their specific features. In addition, the high volume of already digitised marine documents that await curation is amassed and a demonstration of the methodology, with a new scalable, extendable and containerised tool, “DECO” (bioDivErsity data Curation programming wOrkflow) is presented. DECO’s usage will provide a solid basis for future curation initiatives and an augmented degree of reliability towards high value data products that allow for the connection between the past and the present, in marine biodiversity research.
From 2017 to 2019, an extensive sampling campaign was conducted in Belgian inland and coastal waters, aimed at providing paired data of optical and biogeochemical properties to support research into optical monitoring of aquatic systems. The campaign was focused on inland waters, with sampling of four lakes and a coastal lagoon during the growth season, in addition to samples of opportunity from other four lakes. Campaigns also included the Scheldt estuary over a tidal cycle and two sampling campaigns in the Belgian coastal zone. Measured parameters include inherent optical properties (absorption, scattering and beam attenuation coefficients, near-forward volume scattering function, turbidity), apparent optical properties (Secchi disc depth, substrate and water-leaving Lambert-equivalent bi-hemispherical reflectance), and biogeochemical properties (suspended particulate matter, mineral fraction of particle mass, particle size distribution, pigment concentration, DNA metabarcoding, flow microscopy counts, and bottom type classification). The diversity of water bodies and environmental conditions covered a wide range of system states. The chlorophyll a concentration varied from 0.63 to 382.72 mg m−3, while the suspended particulate matter concentration varied from 1.02 to 791.19 g m−3, with mineral fraction varying from 0 to 0.95. Depending on system and season, phytoplankton assemblages were dominated by cyanobacteria, green algae (Mamiellophyceae, Pyramimonadophyceae), or diatoms. The dataset is available from https://doi.org/10.1594/PANGAEA.940240 (Castagna et al., 2022).
Coastal environments are increasingly shown to have a positive effect on our health and well-being. Various mechanisms have been suggested to explain this effect. However, so far little focus has been devoted to emotions that might be relevant in this context, especially for people who are directly or indirectly exposed to the coast on a daily basis. Our preregistered qualitative study explored how coastal residents experience the emotions they feel at the coast and how they interpret the effect these emotions have on them. We conducted semi-structured interviews with a purposive sample of eight Belgian coastal residents aged 21–25 years old. The interviews were analyzed with the approach of interpretative phenomenological analysis. Five superordinate themes were identified and indicate that, for our participants, the coast represents a safe haven (1) in which they can experience emotional restoration (2), awe (3), and nostalgia (4). These emotional states are accompanied with adaptive emotion regulating strategies (5), such as reflection and positive reappraisal, that may facilitate coping with difficult thoughts and feelings. Our study demonstrates the importance of investigating specific emotions and related processes triggered at the coast and how these could contribute to the therapeutic value of the coast.
Aim Urbanized environments may stimulate unhealthy food choices and stress. Several theories explain that exposure to green nature can counter these stress effects. Since we spend most time indoors, integrating nature in the interior could be a promising health promotion tool. Hence, we tested whether the beneficial effect of nature for stress recovery is also present in indoor settings via the use of plants or green colors, and whether it is applicable on eating behavior as a new outcome. Methods The 92 participants (18-30y, 16% men) were divided into four groups. Each viewed a 6-min slideshow with room pictures containing either green plants, green objects, greyscale plants or greyscale objects to allow distinction between color- and plant-effects. Group differences were tested for the perceived restorativeness scale, psychological recovery and eating behavior. To allow psychological recovery testing, participants were exposed to a stressor before the picture slideshow via the Trier Social Stress Test. The change of self-reports (stress, positive and negative affect) and psychophysiology (heart rate and vagal-induced heart rate variability RMSSD) post-slideshow versus pre-slideshow was checked. Eating behavior outcomes included change in hunger, craving, and food choice (for fruits, vegetables and snacks). Results From the four picture sets, the green plants pictures were reported as most mentally restorative and appeared most beneficial for post-stressor recovery of positive affect, but not for negative affect or stress recovery. The green plants group also had higher preference for vegetables and lower preference or craving for (unhealthy) snacks. Those significant group differences were mainly due to the presence of plants and only occasionally due to the green color. Conclusion Indoor green plant pictures were associated with higher mental restorativeness and healthier food choices. Integrating plants in the interior seems to be a relevant health promotion approach, while applying green colors seems less relevant.
The North Sea is one of the busiest and most exploited marine areas on Earth and is home to many highly migratory and economically important species. At the northern boundary, a 300‐km corridor between Norway and Shetland forms a major egress point from the North Sea to the Norwegian Sea and broader Atlantic Ocean, which is known to be used by many focal species including Atlantic salmon, European eel, European sturgeon, Atlantic bluefin tuna, basking shark, Atlantic mackerel, spiny dogfish, among others. We argue that this relatively shallow 300‐km corridor is a critical area for ecological and oceanographic research in the North Sea to understand species distribution, migratory patterns, responses to climate, fisheries, and more. Instrumentation of the Bergen‐Shetland Corridor with a line of oceanographic and biological tracking infrastructure would help capture the spatiotemporal dynamics of the ocean and its major fauna between the North Sea and Norwegian Sea, a boundary between management areas from ICES and OSPAR.
Climate change is rapidly altering the Arctic environment. Although long-term environmental observations have been made at a few locations in the Arctic, the incomplete coverage from ground stations is a main limitation to observations in these remote areas. Here we present a wind and sun powered multi-purpose mobile observatory (ARC-MO) that enables near real time measurements of air, ice, land, rivers, and marine parameters in remote off-grid areas. Two test units were constructed and placed in Northeast Greenland where they have collected data from cabled and wireless instruments deployed in the environment since late summer 2021. The two units can communicate locally via WiFi (units placed 25 km apart) and transmit near-real time data globally over satellite. Data are streamed live and accessible from (https://gios.org). The cost of one mobile observatory unit is c. 304.000€. These test units demonstrate the possibility for integrative and automated environmental data collection in remote coastal areas and could serve as models for a proposed global observatory system.
Background In acoustic telemetry studies, detection range is usually evaluated as the relationship between the probability of detecting an individual transmission and the distance between the transmitter and receiver. When investigating animal presence, however, few detections will suffice to establish an animal’s presence within a certain time frame. In this study, we assess detection range and its impacting factors with a novel approach aimed towards studies making use of binary presence/absence metrics. The probability of determining presence of an acoustic transmitter within a certain time frame is calculated as the probability of detecting a set minimum number of transmissions within that time frame. We illustrate this method for hourly and daily time bins with an extensive empirical dataset of sentinel transmissions and detections in a receiver array in a Belgian offshore wind farm. Results The accuracy and specificity of over 84% for both temporal resolutions showed the developed approach performs adequately. Using this approach, we found important differences in the predictive performance of distinct hypothetical range testing scenarios. Finally, our results demonstrated that the probability of determining presence over distance to a receiver did not solely depend on environmental and technical conditions, but would also relate to the temporal resolution of the analysis, the programmed transmitting interval and the movement behaviour of the tagged animal. The probability of determining presence differed distinctly from a single transmission’s detectability, with an increase of up to 266 m for the estimated distance at 50% detection probability ( D 50 ). Conclusion When few detections of multiple transmissions suffice to ascertain presence within a time bin, predicted range differs distinctly from the probability of detecting a single transmission within that time bin. We recommend the use of more rigorous range testing methodologies for acoustic telemetry applications where the assessment of detection range is an integral part of the study design, the data analysis and the interpretation of results.
When applying the Ecosystem Services (ES) concept for the management of marine activities it is beneficial to involve stakeholders from the start and incorporate their knowledge in the decision-making process. Doing so can help to identify key ES, to prioritize the development of human activities that positively impact those ES, and to identify potential trade-offs and win-win scenarios between sectors. On the Belgian Continental Shelf (BCS), different marine economic activities share a relatively small area where the demand for space continues to grow to accommodate emerging sectors. In order to systematically capture the stakeholders' opinions on key ecosystem services and to make the relation between specific marine economic activities and the anticipated change these bring to the ES, a stakeholder workshop was organized. Participants had to prioritize a list of fourteen marine ES relevant to the BCS and the highest-ranking ES were coastal protection, biodiversity, offshore wind energy, surface for navigation, and habitat maintenance. In addition, a conceptual diagram was co-developed linking marine activities and ES to highlight potential synergies and trade-offs, with a focus on the fastest growing activity in the BCS-offshore wind farming. The approach presented is easily transferable and can help researchers and decision-makers capture stakeholders' perceptions regarding the importance of local ES at specific points in time, thus providing a baseline for establishing priorities during ES modeling and management.
Microplastics (MPs) were collected at six locations along Kenya's marine nearshore surface waters using a 300 μm mesh-size manta net. The samples were washed over a 125-μm mesh size sieve No.120 into a glass jar and preserved in 70% ethanol. MPs were sorted, counted visually under a dissecting microscope then identified using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. A total of 1473 particles with an overall mean concentration of 0.58 ± 1.29 MPs m − 3 , were collected. Fragments were the most common types representing 55% of the total MPs, followed by films (40%) and fibers (2%). Polypropylene (PP) was dominant (52%), high-density polyethylene (HDPE) comprised 38% and low density polyethylene (LDPE) 10% of the total MPs. This study provided baseline information, in which Malindi was identified as a hot spot for MPs pollution. Furthermore, the outcomes will assist policy formulations and management strategies aimed at controlling marine plastics.
Understanding large-scale spatial and temporal patterns of marine populations is a central goal in ecology, which has received renewed attention under climate change. However, few studies explore the large-scale dynamics of populations using standardized protocols and during the same time frames. We studied the phenology and intensity of reproduction and recruitment for the intertidal stalked barnacle Pollicipes pollicipes over an European scale and described their potential linkages with environmental variables. This species supports profitable fisheries in the Iberian Peninsula (Spain and Portugal). In Brittany (France), we had observed a significant lower reproductive effort (long non-breeding season, short breeding period in summer) and low values of recruitment intensity. This pattern may be related to the fact that Brittany corresponds to the northern limit of the distribution of this species in continental Europe. On the Iberian Peninsula, the most different region was Galicia (Spain), with Asturias (Spain) and SW Portugal being more similar. In Galicia, we have observed a contradictory pattern characterized by the absence of a non-breeding period and by a shorter recruitment season than observed in other Iberian regions. Our results suggest that air temperature, SST and chlorophyll-a might be related to the variability in reproduction and recruitment patterns of P. pollicipes. Moreover, spring and early summer upwelling in SW Portugal and Galicia might be inhibiting recruitment in this period. At the northern limit, the expected increase in performance under climate change might facilitate the recovery of populations after exploitation, increasing the resilience of the resource to fishing pressure.
The goal of this study was to determine whether a bio-based self-reinforced polylactic acid (SRPLA) is suitable for use in structures deployed in the marine environment. The material was produced from co-mingled fibres with different melting points. Two key criteria, durability during service and microplastic formation, were examined. To assess durability, mechanical properties, tension and transverse impact, were used to quantify the influence of seawater ageing for up to 24 months. After seawater ageing at 40 °C for 12 months, composite strength was completely degraded. To assess microplastic formation, specimens of SRPLA were exposed in seawater to accelerated ultraviolet (UV) radiation simulating natural exposure for up to 18 months. Fluorescence microscopy and infrared technology were used to quantify and characterise the microplastics formed. Their number was independent of UV exposure, suggesting short-term UV radiation does not accelerate SRPLA microplastic formation. We discuss the potential for SRPLA to be considered a promising material for sustainable marine applications.
Science outreach is key to closing the gap between science and society. However, it often fails to reach those who feel excluded from science or are dismissive of it. By sharing our experience at Native Scientist, we demonstrate how outreach activities can help improve equity, diversity, and inclusion (EDI).
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
76 members
Ana Isabel Catarino
  • Ocean and Human Health Group
Lisa Inès Devriese
  • Policy Information
Leen Vandepitte
  • Data Centre
Wandelaarkaai 7, 8400, Ostend, West-Vlaanderen, Belgium
Head of institution
Jan Mees
+32-(0)59-34 21 30