University of Santiago de Compostela
  • Santiago de Compostela, A Coruña, Spain
Recent publications
The endogenous content of polyamines and the expression of genes involved in their metabolism were analyzed in grapevine (Vitis vinifera L. ‘Mencía’) somatic embryo aggregates to determine the effect of a semipermeable membrane on their maturation in differentiation medium. The endogenous polyamine content in the somatic embryo aggregates was higher in those cultured over the semipermeable membrane and significantly increased with culture time due to an increase in the free polyamine fraction. Free putrescine represented more than 95% of the total free polyamine fraction and significantly peaked in the second week of culture of the somatic embryo aggregates over the semipermeable membrane. This finding appears to be supported by active expression of the VvADC gene and the low free spermidine level. Another significant peak of free putrescine was detected at the end of culture over the membrane, in which free spermidine level remained low despite the VvSPDS2 gene was upregulated. Hence, it is advisable that this increase in free putrescine was supported by back conversion from spermidine through VvPAO expression. As the semipermeable membrane successfully avoided precocious germination of the grapevine somatic embryos, the results support that polyamine metabolism, particularly putrescine metabolism, is involved in their correct maturation.
As regioisomers/bioisosteres of 1a, a 4-phenylbenzamide tranylcypromine (TCP) derivative previously disclosed by us, we report here the synthesis and biological evaluation of some (hetero)arylbenzoylamino TCP derivatives 1b-6, in which the 4-phenyl moiety of 1a was shifted at the benzamide C3 position or replaced by 2- or 3-furyl, 2- or 3-thienyl, or 4-pyridyl group, all at the benzamide C4 or C3 position. In anti-LSD1-CoREST assay, all the meta derivatives were more effective than the para analogues, with the meta thienyl analogs 4b and 5b being the most potent (IC50 values ¼ 0.015 and 0.005 lM) and the most selective over MAO-B (selectivity indexes: 24.4 and 164). When tested in U937 AML and prostate cancerLNCaP cells, selected compounds 1a,b, 2b, 3b, 4b, and 5a,b displayed cell growth arrest mainly in LNCaPcells. Western blot analyses showed increased levels of H3K4me2 and/or H3K9me2 confirming the involvement of LSD1 inhibition in these assays.
Remotely sensed data are increasingly used together with National Forest Inventory (NFI) data to improve the spatial precision of forest variable estimates. In this study, we combined data from the 4th Spanish National Forest Inventory (SNFI-4) and from the 2nd nationwide Airborne Laser Scanning (ALS) survey to develop predictive forest inventory variables (total over bark volume (V), basal area (G), and annual increase in total volume (IAVC)) and aboveground biomass (AGB) models for the eight major forest strata in the region of Extremadura that are included in the Spanish Forest Map (SFM). We generated maps at 25 m resolution by applying an area‐based approach (ABA) and 758 sample plots measured with good positional accuracy within the SNFI-4 in Extremadura (Spain). Inventory performance is mainly influenced by spatial scale and vegetation structure. Therefore, in this study, we conducted a comparative analysis of statistical inference methods that can characterize forest inventory variables and AGB uncertainty across multiple spatial scales and types of vegetation structure. Predictions at pixel level were used to produce county, provincial, and regional model-based estimates, which were then compared with design-based estimates at different scales for different types of forest. We developed and tested both methods for forested area (cover, 19,744.15 km²), one province (9126.78 km²), and two counties (1594.42 km² and 2076.76 km², respectively) in Extremadura. The resulting relative standard error (SE) for regional level forest type-specific model-based estimates of V, G, IAVC, and AGB ranged from 3.34%–14.46%, 3.22%–12.50%, 4.46%–16.67%, and 3.63%–12.58%, respectively. The performance of the model-based approach, as assessed by the relative SE, was similar to that of the design-based approach at regional and provincial levels. However, the precision of SNFI model-based estimates was higher than that of estimates based on only the plot observations in small areas (e.g. at county level). The standard errors (SE) for model-based inferences were stable across the different scales, while SNFI design-based errors were higher due to the small sample sizes available for small areas. The findings indicate that SNFI-model based maps could be used directly to estimate forest inventory variables and AGB in the major forest strata included in the Spanish Forest Map, leading to potentially large economic savings. © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
Abstract The species composition of cyanobacteria assemblages was studied in six thermo-mineral springs of spas in Atlantic environments of Galicia (NW Spain). Two are considered hot (Ta ≥ 40 °C), two intermediate (Ta 20–40 °C) and two cold (Ta ≤ 20 °C), and four contain hydrogen sulphide. A total of 21 taxa (14 genera) have been recorded. Two diversity indices, Shannon index and Evenness were determined. The Shannon–Wiener index ranged between 0.31 and 0.73 and the Evenness index between 0.44 and 0.88. nMDS ordination showed that cyanobacteria assemblage composition was influenced mostly by temperature. Of the species identified, the most diverse genus is Leptolyngbya with four species, followed by Chroococcus with three species and Aphanocapsa, Phormidium and Lyngbya with two species. The most abundant species was Jaaginema angustissimum, followed by Leptolyngbya laminosa and Symploca thermalis. In the two cold springs, seven different species were found, and only Aphanocapsa conferta was common to both springs. Cyanobacterial species were more numerous in the four hot springs, with 15 different species and only Calothrix thermalis common to these hot springs. It is difficult to establish characteristic cyanobacterial flora for the thermo-mineral waters of the Galician springs since there are significant differences in the communities from the six sites studied.
The Large Hadron Collider beauty (LHCb) experiment at CERN is undergoing an upgrade in preparation for the Run 3 data collection period at the Large Hadron Collider (LHC). As part of this upgrade, the trigger is moving to a full software implementation operating at the LHC bunch crossing rate. We present an evaluation of a CPU-based and a GPU-based implementation of the first stage of the high-level trigger. After a detailed comparison, both options are found to be viable. This document summarizes the performance and implementation details of these options, the outcome of which has led to the choice of the GPU-based implementation as the baseline.
The co-creation and sharing of knowledge among different types of actors with complementary expertise is known as the Multi-Actor Approach (MAA). This paper presents how Horizon2020 Thematic-Networks (TNs) deal with the MAA and put forward best practices during the different project phases, based on the results of a desktop study, interviews, surveys and expert workshops. The study shows that not all types of actors are equally involved in TN consortia and participatory activities, meaning TNs might be not sufficiently demand-driven and the uptake of the results is not optimal. Facilitators are key to contributing to the relationships and the mutual understanding between different actors. Moreover, a user-friendly digital knowledge platform linked to demonstration activities and peer-to-peer exchange can improve the sharing of knowledge, enhancing impact in agricultural and forestry innovation in the longer term. Supplementary information: The online version contains supplementary material available at 10.1186/s40100-021-00209-0.
The Mediterranean region has been declared a climate change hotspot due, among other reasons, to an expected increase in the torrential rains that frequently affect this densely populated area. However, the extent to which these torrential rains are connected to other regions outside the Mediterranean remains uncertain. Here we simulate 160 extreme precipitation events with an atmospheric model enabled for state-of-the-art moisture tracking and demonstrate that large scale moisture transport is a more important factor than evaporation over local sources. We find that the average precipitation fraction with source in the Mediterranean is only 35%, while 10% is from evapotranspiration over nearby land in continental Europe and 25% originates in the North Atlantic. The remaining 30% comes from several more distant source regions, sometimes as remote as the tropical Pacific or the Southern Hemisphere, indicating direct connections with multiple locations on the planet and a global scale energy redistribution. Our results point to the importance of approaching these extreme episodes from a more global rather than purely regional perspective, especially when attempting to attribute them to climate change.
Background Foam rolling has been extensively investigated, showing benefits in performance and recovery. Recently, vibration has been added to foam rollers, with hypothesized advantages over conventional foam rollers. However, there is no systematic evidence in this regard. Objective To carry out a systematic review and meta-analysis about the effects of vibration foam roller (VFR) on performance and recovery. Methods A systematic search was conducted in PubMed/MEDLINE, Web of Science and SportDiscus according to the PRISMA guidelines. The outcomes included performance (jump, agility and strength) and recovery variables (blood flow, pain and fatigue) measured after an intervention with VFR. The methodological quality was assessed with the PEDro scale. A random-effects model was used to perform the meta-analysis. Results Initially, 556 studies were found and after the eligibility criteria 10 studies were included in the systematic review and 9 in the meta-analysis. There was no significant effects on jump performance (SMD = 0.14 [95% CI − 0.022 to 0.307]; p = 0.101; I 2 = 1.08%) and no significant beneficial effects were reported on isokinetic strength (SMD = 0.16 [95% CI − 0.041 to 0.367]; p = 0.117; I 2 = 9.7%). Recovery appears to be enhanced after VFR interventions, but agility does not seem to increase after VFR interventions. Conclusion This systematic review and meta-analysis suggest that VFR could have great potential for increasing jump performance, agility, strength and enhancing recovery. Further research is needed to confirm the effects of VFR on performance and recovery. Trial Registration This investigation was registered in PROSPERO with the code CRD42021238104.
Noiseless quantum channels are critical to share a pure maximally entangled state for performing an ideal teleportation protocol. However, in reality the shared entanglement severely degraded due to decoherence. In this paper, we propose a quantum teleportation channel protection scheme to enhance the teleportation fidelity in presence of decoherence. Before the entangled pair enters the decoherence channel, the weak measurement and flip operations are applied to transfer the qubit to a more robust state to the effects of the noise. After the decoherence channel the reversed flip operations and weak measurement reversal are applied to recover the initial state. We illustrate our protected teleportation scheme and compare it with a protocol based on weak measurement reversal. The numerical results show that the average teleportation fidelity of our proposed scheme can be significantly improved. Although the proposed entanglement protection scheme is probabilistic, after a successful entanglement transmission, we use the standard teleportation protocol which has probability one.
Background Current noninvasive assays have limitations in the early detection of colorectal cancer. We evaluated the clinical utility of promoter methylation of the long noncoding RNA LINC00473 as a noninvasive biomarker to detect colorectal cancer and associated precancerous lesions. Methods We evaluated the epigenetic regulation of LINC00473 through promoter hypermethylation in colorectal cancer cell lines using bisulfite genomic sequencing and expression analyses. DNA methylation of LINC00473 was analyzed in primary colorectal tumors using 450K arrays and RNA-seq from The Cancer Genome Atlas (TCGA). Tissue-based findings were validated in several independent cohorts of colorectal cancer and advanced colorectal polyp patients by pyrosequencing. We explored the clinical utility of LINC00473 methylation for the early detection of colorectal cancer in plasma cell-free DNA by quantitative methylation-specific PCR and droplet digital PCR. Results LINC00473 showed transcriptionally silencing due to promoter hypermethylation in colorectal cancer cell lines and primary tumors. Methylation of the LINC00473 promoter accurately detected primary colorectal tumors in two independent clinical cohorts, with areas under the receiver operating characteristic curves (AUCs) of 0.94 and 0.89. This biomarker also identified advanced colorectal polyps from two other tissue-based clinical cohorts with high diagnostic accuracy (AUCs of 0.99 and 0.78). Finally, methylation analysis of the LINC00473 promoter in plasma cell-free DNA accurately identified patients with colorectal cancer and advanced colorectal polyps (AUCs of 0.88 and 0.84, respectively), which was confirmed in an independent cohort of patients. Conclusions Hypermethylation of the LINC00473 promoter is a new promising biomarker for noninvasive early detection of colorectal cancer and related precancerous lesions.
Background Mesoplastics (5–25 mm) and microplastics (0.001–5 mm) are emerging pollutants of great concern. However, reliable methods of monitoring these types of plastic in river ecosystems have not yet been established. The goal of this work was to evaluate, for the first time, the suitability of Fontinalis antipyretica as a biomonitor of meso- and micro-plastics in rivers. With this aim, native samples of the moss and devitalized moss clones, held inside the bags, were compared for the uptake of fluorescent polystyrene particles under laboratory conditions, and for retention of plastic debris in the field, in sites close to wastewater treatment plants. Results In the laboratory experiment, the moss retained smaller microplastics, and a higher number of polystyrene meso and microplastics was counted in the moss bags than in the native moss. In the field study, the moss retained plastic debris chiefly in the form of fibres regardless of the capacity and flow rate of the wastewater treatment plants affecting each sampling site. The uniform morphology of moss clone seems to affect the retention of this type of pollutant. The FTIR analysis confirmed the particles entrapped by the moss bags as plastic, specifically polyethylene and polyamide type 6, among the most common plastic polymers detected in rivers. Conclusions The study findings highlighted the value of using uniform material, as the clone exhibited a greater accumulation efficiency with respect to the native moss. The mesh bags could act as selective filters and/or prevent the loss of adhering plastics. In the field, the bags favour plastic fibres retention despite the river flow. Finally, although FTIR is useful for the identification of plastic type, it is not very sensitive when small quantities of ground samples are used.
This contribution focuses on the development of Model Order Reduction (MOR) for one-way coupled steady state linear thermo-mechanical problems in a finite element setting. We apply Proper Orthogonal Decomposition (POD) for the computation of reduced basis space. On the other hand, for the evaluation of the modal coefficients, we use two different methodologies: the one based on the Galerkin projection (G) and the other one based on Artificial Neural Network (ANN). We aim to compare POD-G and POD-ANN in terms of relevant features including errors and computational efficiency. In this context, both physical and geometrical parametrization are considered. We also carry out a validation of the Full Order Model (FOM) based on customized benchmarks in order to provide a complete computational pipeline. The framework proposed is applied to a relevant industrial problem related to the investigation of thermo-mechanical phenomena arising in blast furnace hearth walls.
The overwhelming production of waste represents a complex environmental challenge for mining companies worldwide. Efforts are currently being made to develop methods for storing or reusing such potentially hazardous waste. Among innovative environmentally-friendly solutions, constructing Technosols from mining waste may be a feasible solution for revalorizing this type of waste. However, there is a knowledge gap regarding the pedogenic processes that govern the functioning of these soils. The Fundão Dam collapse (2015) offers a unique opportunity to evaluate the early pedogenesis of a Technosol unintentionally formed from Fe-rich tailings deposited in the Doce River estuary. This study aimed to assess the pathways of Technosol pedogenesis, four years after the world’s largest mining disaster. Based on a multi-technique approach (including macro-and micromorphological analysis, mineralogical analysis, physicochemical parameters and geochemical analysis of Fe partitioning), bare tailings and different Technosol profiles were analyzed to unravel the action of early pedogenesis in a hydromorphic environment. Within four years, rapid colonization by plants favored fine particle accumulation and triggered a process of cumulization, as evidenced by a 6-fold increase in the clay content. The vegetation also promoted input of organic carbon (from 0.4 to 2.1 %), which altered the geochemical environment and Fe dynamics. These changes promoted melanization, incipient paludization and gleization. The Fe partitioning revealed that the bare tailings, primarily comprising crystalline Fe oxides, transitioned to soil matrices dominated by poorly crystalline Fe oxyhydroxides (41 ± 3 %). Examination of thin sections revealed rapid Fe translocation through Technosol profiles associated with the formation of Fe coatings and hypocoating pedofeatures. This study provides valuable insights into the action of both time and organisms as factors for Technosol formation and functioning.
The larval development of the endangered freshwater mussel Margaritifera margaritifera (L.) represents one of the most unique parasitism among naiads, in which larva parasite the fish gills for several months. Despite the importance of this parasitic phase to successfully culture the freshwater mussel, the larval morphogenesis remains understudied. To describe the parasitic larval development and metamorphosis, Atlantic salmon (Salmo salar L.) were exposed to glochidia, sampled periodically to visualize the gills by stereomicroscopy and light microscopy and results were summarized throughout three developmental stages. Once attached to the fish gills, glochidia changed their morphology within the first days and acquired an intermediate stage termed mushroom larva due to the presence of the mushroom body and the zip membrane, both structures are transitory and distinctive of this long-lasting parasitism. The zip membrane, located at the valve cleft, may play a unique role in the isolation and acquisition of non-particulate nutrients from the fish, while the mushroom body of the mantle accumulates abundant intracytoplasmic lipid droplets. After 200 days, a successful metamorphosis was evidenced by the formation of a complete set of post-larval organs, pointing to the acquisition of different functionality, which will be essential for the settlement and deposit-feeding into the riverbed. Among the post-larval organs, the byssal complex of the post-larval foot was described for the first time at the end of the parasitic stage of naiads. In conclusion, this study provides an overview of the larval morphogenesis of M. margaritifera, from glochidium to post-larva, essential for understanding the parasitic interaction between the freshwater mussel larva and the fish host. Moreover, the morphological techniques and the hallmarks described might be applicable to optimize and monitor the larval developmental status during one of the most critical stages of the captive breeding programmes of endangered freshwater mussels.
Reducing the costs and environmental impacts of sludge management is currently one of the main challenges faced by the wastewater treatment sector. Anaerobic digestion followed by land application has been widely endorsed as a low-impact approach to sludge management, mainly due to the recovery of biogas and the valorization of digestate. However, the influence that the operational conditions of digestion and the management practices of land application can have over the environmental performance of this strategy has been scarcely studied. Furthermore, most of the previous studies dealing with the environmental assessment of this strategy use simplified methods for estimating emissions after land application of sludge, and the lack of systematic accounting of these environmental flows might significantly affect the validity and comparability of the results. Therefore, this work performed an assessment of the influence that 4 relevant practices can have over the environmental impacts of this approach in the context of south-central Chile, providing a mass-balanced inventory for nitrogen, phosphorus and heavy metals in soil based on the ad hoc implementation of models developed for agricultural Life Cycle Assessment (LCA). A total of 16 scenarios were defined and 10 impact categories were evaluated, with the results showing that the environmental impacts were greatly influenced by the variables under study. Overall, solids retention time and the inclusion of pre-treatment mainly influenced climate change, fossil resource depletion and terrestrial ecotoxicity potential, while sludge application rate influenced the eutrophication, water ecotoxicity and human toxicity categories. The type of crop in the receiving soil was a significant driver behind the differences observed in the human toxicity category, which showed the highest variation and relevance in the final weighted result. The results clearly highlight the relevance of using context specific data as well as of quantifying the fate of nutrients, metals and heavy metals during LCA of sludge management. Based on the results, some policy and decision-making recommendations are formulated to optimize the environmental performance of sludge digestion and land application.
Integrated management of biodiversity and ecosystem services (ES) in heterogeneous landscapes requires considering the potential trade-offs between conflicting objectives. The UNESCO's Biosphere Reserve zoning scheme is a suitable context to address these trade-offs by considering multiple management zones that aim to minimise conflicts between management objectives. Moreover, in Mediterranean ecosystems, management and planning also needs to consider drivers of landscape dynamics such as wildfires and traditional farming and forestry practices that have historically shaped landscapes and the biodiversity they host. In this study, we applied a conservation planning approach to prioritise the allocation of management zones under future landscape and climate scenarios. We tested different landscape management scenarios reflecting the outcomes of climate-smart and fire-smart policies. We projected the expected landscape dynamics and associated changes on the distribution of 207 vertebrate species, 4 ES and fire hazard under each scenario. We used Marxan with Zones to allocate three management zones, replicating the Biosphere Reserves zoning scheme ("Core area", "Buffer zone" and "Transition area") to address the various management objectives within the Biosphere Reserve. Our results show that to promote ES supply and biodiversity conservation, while also minimising fire hazard, the reserve will need to: i) Redefine its zoning, especially regarding Core Areas, which need a considerable expansion to help mitigate changes in biodiversity and accommodate ES supply under expected changes in climate and species distribution. ii) Revisit current management policies that will result in encroached landscapes prone to high intensity, uncontrollable wildfires with the potential to heavily damage ecosystems and compromise the supply of ES. Our results support that both climate-and fire-smart policies in the Meseta Ibérica can help develop multifunctional landscapes that help mitigate and adapt to climate change and ensure the best possible maintenance of biodiversity and ES supply under uncertain future climate conditions.
The Spanish real estate and its ‘sea and sun’ tourism model, were profoundly disrupted during the Great Recession of 2008–2014 As a result, hedge funds and their speculative operations have favoured an intense process of urban touristification in the largest Spanish cities, especially over the past ten years. The aim of this paper is to examine how the COVID-19 crisis has triggered shifts in the supply of short-term rentals and the type of demand of such rentals. By taking into account such changes, we will address the potential changes that the current pandemic scenario might bring between the ‘classical’ real estate market and short-term rentals in Spain.
Dry-cured ham is a traditional Mediterranean meat product consumed throughout the world. This product is very variable in terms of composition and quality. Consumer’s acceptability of this product is influenced by different factors, in particular, visual intramuscular fat and its distribution across the slice, also known as marbling. On-line marbling assessment is of great interest for the industry for classification purposes. However, until now this assessment has been traditionally carried out by panels of experts and this methodology cannot be implement in industry. We propose a complete automatic system to predict marbling degree of dry-cured ham slices, which combines: (1) the color texture features of regions of interest (ROIs) extracted automatically for each muscle; and (2) machine learning models to predict the marbling. For the ROIs extraction algorithm more than the 90% of pixels of the ROI fall into the true muscle. The proposed system achieves a correlation of 0.92 using the support vector regression and a set of color texture features including statistics of each channel of RGB color image and Haralick’s coefficients of its gray-level version. The mean absolute error was 0.46, which is lower than the standard desviation (0.5) of the marbling scores evaluated by experts. This high accuracy in the marbling prediction for sliced dry-cured ham would allow to deploy its application in the dry-cured ham industry.
Slash and burn is a land use practice widespread all over the world, and nowadays it is formally recognized as the principal livelihood system in rural areas of South America, Asia, and Africa. The practice consists of a land rotation where users cut native or secondary forest to establish a new crop field and, in some cases, build charcoal kilns with the cut wood to produce charcoal. Due to several socio-economic changes in developing countries, some scientists and international organizations have questioned the sustainability of slash and burn since in some cases, crop yield does not justify the soil degradation caused. To estimate the soil quality in agricultural and forest soils at different ages of the forest-fallow period (25, 35, and 50 years), this survey investigated rural areas in three locations in Manica province, central Mozambique: Vanduzi, Sussundenga, and Macate. Soil profiles were trenched and sampled with a pedological approach under crop fields and forest-fallow. The chronosequence was selected to test the hypothesis that the increase in forest-fallow age causes an improvement of soil fertility. Results highlighted discrete variations among locations in mineralogy, Al- and Fe-oxyhydroxides, sand, silt, pH, total organic carbon, humic carbon, total nitrogen, available phosphorous, chloride, nitrate, fluoride, and ammonium. Few differences in mineralogy, Fe-oxyhydroxides, available P, chloride, and nitrate were detected between crop fields and forest-fallow within the same location. Such differences were mostly ascribed to intrinsic fertility inherited from the parent material rather than a longer forest-fallow period. However, physicochemical soil property improvement did not occur under a forest age of 50 years (the longest forest-fallow considered), indicating that harmonization of intrinsic fertility and agronomic practices may increase soil organic matter and nutrient contents more than a long forest-fallow period.
Osteoarthritis (OA) affects more than 300 million people worldwide and it is about to become the first disabling disease. OA is characterized by the progressive degradation of the articular cartilage but is a disease of the whole joint. Articular innate immune responses (IIR) associated with tissue degradation contribute to its progression. However, no treatment is available to block these IIRs. Through data text mining and computational pharmacology, we identified two clinical available drugs, naloxone, and thalidomide, with potential inhibitory properties on toll-like receptor 4 (TLR4), a major activator of these IIR. Proteome analysis confirmed that activation of this receptor or the IL1 receptor generated OA-like and gout-like proteomic changes in human primary chondrocytes. Both compounds were found to block TLR4 complex and inhibit TLR4 and IL1R-mediated IIR in OA chondrocytes, osteoblasts, and synoviocytes. Furthermore, naloxone and thalidomide inhibitory effects involved the downregulation of the NLRP3 inflammasome pathway, which is downstream of TLR4/IL1R signaling. We demonstrated that these compounds, within a therapeutic range of concentrations, exhibited anti-inflammatory and anti-catabolic properties in joint primary OA cells without any toxic effect. This data underpins naloxone & thalidomide repurpose to treat OA-associated inflammatory responses.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
7,794 members
Antonio L. Llamas-Saiz
  • X-Ray Unit. Research Infrastructures Area
Fernando Torres Andón
  • Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS)
Christopher P Phillips
  • Forensic Genetics Unit, Institute of Forensic Sciences
Colexio de San Xerome, Praza do Obradoiro, s/n., 15782, Santiago de Compostela, A Coruña, Spain
Head of institution
Antonio López Díaz
0034881 811 001
0034881 811 201