University of Paris-Est
  • Descartes, France
Recent publications
Obsessive-compulsive disorder (OCD) is a highly disabling mental illness that can be divided into frequent primary and rarer organic secondary forms. Its association with secondary autoimmune triggers was introduced through the discovery of Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal infection (PANDAS) and Pediatric Acute onset Neuropsychiatric Syndrome (PANS). Autoimmune encephalitis and systemic autoimmune diseases or other autoimmune brain diseases, such as multiple sclerosis, have also been reported to sometimes present with obsessive-compulsive symptoms (OCS). Subgroups of patients with OCD show elevated proinflammatory cytokines and autoantibodies against targets that include the basal ganglia. In this conceptual review paper, the clinical manifestations, pathophysiological considerations, diagnostic investigations, and treatment approaches of immune-related secondary OCD are summarized. The novel concept of “autoimmune OCD” is proposed for a small subgroup of OCD patients, and clinical signs based on the PANDAS/PANS criteria and from recent experience with autoimmune encephalitis and autoimmune psychosis are suggested. Red flag signs for “autoimmune OCD” could include (sub)acute onset, unusual age of onset, atypical presentation of OCS with neuropsychiatric features (e.g., disproportionate cognitive deficits) or accompanying neurological symptoms (e.g., movement disorders), autonomic dysfunction, treatment resistance, associations of symptom onset with infections such as group A streptococcus, comorbid autoimmune diseases or malignancies. Clinical investigations may also reveal alterations such as increased levels of anti-basal ganglia or dopamine receptor antibodies or inflammatory changes in the basal ganglia in neuroimaging. Based on these red flag signs, the criteria for a possible, probable, and definite autoimmune OCD subtype are proposed.
At least 10% of the BRCA1/2 tests identify variants of uncertain significance (VUS) while the distinction between pathogenic variants (PV) and benign variants (BV) remains particularly challenging. As a typical tumor suppressor gene, the inactivation of the second wild-type (WT) BRCA1 allele is expected to trigger cancer initiation. Loss of heterozygosity (LOH) of the WT allele is the most frequent mechanism for the BRCA1 biallelic inactivation. To evaluate if LOH can be an effective predictor of BRCA1 variant pathogenicity, we carried out LOH analysis on DNA extracted from 90 breast and seven ovary tumors diagnosed in 27 benign and 55 pathogenic variant carriers. Further analyses were conducted in tumors with PVs yet without loss of the WT allele: BRCA1 promoter hypermethylation, next-generation sequencing (NGS) of BRCA1/2 , and BRCAness score. Ninety-seven tumor samples were analyzed from 26 different BRCA1 variants. A relatively stable pattern of LOH (65.4%) of WT allele for PV tumors was observed, while the allelic balance (63%) or loss of variant allele (15%) was generally seen for carriers of BV. LOH data is a useful complementary argument for BRCA1 variant classification.
Background Valproic acid (VPA) poisoning is responsible for life-threatening neurological and metabolic impairments. Despite only low-level evidence of effectiveness, L-carnitine has been used for years to prevent or reverse VPA-related toxicity. We aimed to evaluate the effects of L-carnitine used to treat acute VPA poisoning on the time-course of plasma VPA concentrations and VPA-related toxicity. We designed a single-center cohort study including all VPA-poisoned patients admitted to the intensive care unit. We studied VPA toxicokinetics using a nonlinear mixed-effects model-based population approach and modeled individual plasma VPA/blood lactate concentration relationships. Then, we evaluated L-carnitine-attributed effects by comparing VPA elimination half-lives and time-courses of blood lactate levels and organ dysfunction [assessed by the Sequential Organ Failure Assessment (SOFA) score] between matched L-carnitine-treated and non-treated patients using a multivariate analysis including a propensity score. Results Sixty-nine VPA-poisoned patients (40F/29 M; age, 41 years [32–47]) (median [25th–75th percentiles]; SOFA score, 4 [1–6]) were included. The presumed VPA ingested dose was 15 g [10–32]. Plasma VPA concentration on admission was 231 mg/L [147–415]. The most common manifestations were coma (70%), hyperlactatemia (3.9 mmol/L [2.7–4.9]) and hyperammonemia (127 mmol/L [92–159]). VPA toxicokinetics well fitted a one-compartment linear model with a mean elimination half-life of 22.9 h (coefficient of variation, 28.1%). Plasma VPA (C)/blood lactate concentration (E) relationships were well described by an exponential growth equation [ $$E={E}_{0}\times {e}^{k\cdot C}$$ E = E 0 × e k · C ; with baseline E 0 = 1.3 mmol/L (43.9%) and rate constant of the effect, k = 0.003 L/mg (59.5%)]. Based on a multivariate analysis, peak blood lactate concentration was the only factor independently associated with L-carnitine administration (odds ratio, 1.9, 95% confidence interval, 1.2–2.8; P = 0.004). We found no significant contribution of L-carnitine to enhancing VPA elimination, accelerating blood lactate level normalization and/or preventing organ dysfunction. Conclusions VPA poisoning results in severe toxicity. While L-carnitine does not contribute to enhancing VPA clearance, its impact on accelerating blood lactate level normalization and/or preventing organ dysfunction remains uncertain. Investigating VPA toxicokinetics and concentration/effect relationships may help understanding how to improve VPA-poisoned patient management.
Background Tumor lysis syndrome (TLS) is a life-threatening complication during the treatment of malignant neoplasia. We sought to describe characteristics and predictors of acute kidney injury (AKI), remission and mortality in high-risk TLS patients. In this retrospective monocentric study, we included all patients with the diagnosis of biological and/or clinical TLS from 2012 to 2018. The primary outcome was the prevalence of AKI during the acute phase of TLS. Secondary outcomes were overall mortality and remission of the underlying malignancy at 1 year. Results Among 153 patients with TLS, 123 (80.4%) patients experienced AKI and 83 (54.2%) required renal replacement therapy. mSOFA score (OR = 1.15, IC 95% [1.02–1.34]), age (OR = 1.05, IC 95% [1.02–1.08]) and male gender (OR = 6.79, IC 95% [2.59–19.44]) were associated with AKI. Rasburicase use (HR = 2.45, IC 95% [1.17–5.15]) was associated with remission of the underlying malignancy at 1 year. Parameters associated with mortality at 1 year were mechanical ventilation (HR = 1.96, IC 95% [1.02–3.78]), vasopressors (HR = 3.13, IC 95% [1.59–6.15]), age (HR = 1.02, IC 95% [1–1.03]), spontaneous TLS (HR = 1.65, IC 95% [1.01–2.69]) and delay of chemotherapy administration (HR = 1.01, IC 95% [1–1.03]). Conclusions AKI is highly prevalent in TLS patients. Rasburicase is associated with better outcomes regarding remission of the underlying malignancy. As rasburicase may be an indirect marker of a high degree of tumor lysis and chemosensitivity, more studies are warranted to confirm the protective role of urate oxidase. Delaying chemotherapy may be deleterious in terms of long-term outcomes.
Background Severe acute respiratory syndrome coronavirus-2 (SARS–CoV-2)-induced acute respiratory distress syndrome (ARDS) causes high mortality. Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) have potentially relevant immune-modulatory properties, whose place in ARDS treatment is not established. This phase 2b trial was undertaken to assess the efficacy of UC-MSCs in patients with SARS–CoV-2-induced ARDS. Methods This multicentre, double-blind, randomized, placebo-controlled trial (STROMA–CoV-2) recruited adults (≥ 18 years) with SARS–CoV-2-induced early (< 96 h) mild-to-severe ARDS in 10 French centres. Patients were randomly assigned to receive three intravenous infusions of 10 ⁶ UC-MSCs/kg or placebo (0.9% NaCl) over 5 days after recruitment. For the modified intention-to-treat population, the primary endpoint was the partial pressure of oxygen to fractional inspired oxygen (PaO 2 /FiO 2 )-ratio change between baseline (day (D) 0) and D7. Results Among the 107 patients screened for eligibility from April 6, 2020, to October 29, 2020, 45 were enrolled, randomized and analyzed. PaO 2 /FiO 2 changes between D0 and D7 did not differ significantly between the UC-MSCs and placebo groups (medians [IQR] 54.3 [− 15.5 to 93.3] vs 25.3 [− 33.3 to 104.6], respectively; ANCOVA estimated treatment effect 7.4, 95% CI − 44.7 to 59.7; P = 0.77). Six (28.6%) of the 21 UC-MSCs recipients and six of 24 (25%) placebo-group patients experienced serious adverse events, none of which were related to UC-MSCs treatment. Conclusions D0-to-D7 PaO 2 /FiO 2 changes for intravenous UC-MSCs-versus placebo-treated adults with SARS–CoV-2-induced ARDS did not differ significantly. Repeated UC-MSCs infusions were not associated with any serious adverse events during treatment or thereafter (until D28). Larger trials enrolling patients earlier during the course of their ARDS are needed to further assess UC-MSCs efficacy in this context. Trial registration : NCT04333368. Registered 01 April 2020, .
Background The consequences of cardiac arrest (CA) on the gastro-intestinal tract are poorly understood. We measured the incidence of ischemic injury in the upper gastro-intestinal tract after Out-of-hospital CA (OHCA) and determined the risk factors for and consequences of gastrointestinal ischemic injury according to its severity. Methods Prospective, non-controlled, multicenter study in nine ICUs in France and Belgium conducted from November 1, 2014 to November 30, 2018. Included patients underwent an esophago-gastro-duodenoscopy 2 to 4 d after OHCA if still intubated and the presence of ischemic lesions of the upper gastro-intestinal tract was determined by a gastroenterologist. Lesions were a priori defined as severe if there was ulceration or necrosis and moderate if there was mucosal edema or erythema. We compared clinical and cardiac arrest characteristics of three groups of patients (no, moderate, and severe lesions) and identified variables associated with gastrointestinal ischemic injury using multivariate regression analysis. We also compared the outcomes (organ failure during ICU stay and neurological status at hospital discharge) of the three groups of patients. Results Among the 214 patients included in the analysis, 121 (57%, 95% CI 50–63%) had an upper gastrointestinal ischemic lesion, most frequently on the fundus. Ischemic lesions were severe in 55/121 (45%) patients. In multivariate regression, higher adrenaline dose during cardiopulmonary resuscitation (OR 1.25 per mg (1.08–1.46)) was independently associated with increased odds of severe upper gastrointestinal ischemic lesions; previous proton pump inhibitor use (OR 0.40 (0.14–1.00)) and serum bicarbonate on day 1 (OR 0.89 (0.81–0.97)) were associated with lower odds of ischemic lesions. Patients with severe lesions had a higher SOFA score during the ICU stay and worse neurological outcome at hospital discharge. Conclusions More than half of the patients successfully resuscitated from OHCA had upper gastrointestinal tract ischemic injury. Presence of ischemic lesions was independently associated with the amount of adrenaline used during resuscitation. Patients with severe lesions had higher organ failure scores during the ICU stay and a worse prognosis. Clinical Trial Registration NCT02349074 .
Background: To assess in comatose patients after cardiac arrest (CA) if amplitudes of two somatosensory evoked potentials (SSEP) responses, namely, N20-baseline (N20-b) and N20-P25, are predictive of neurological outcome. Methods: Monocentric prospective study in a tertiary cardiac center between Nov 2019 and July-2021. All patients comatose at 72 h after CA with at least one SSEP recorded were included. The N20-b and N20-P25 amplitudes were automatically measured in microvolts (µV), along with other recommended prognostic markers (status myoclonus, neuron-specific enolase levels at 2 and 3 days, and EEG pattern). We assessed the predictive value of SSEP for neurologic outcome using the best Cerebral Performance Categories (CPC1 or 2 as good outcome) at 3 months (main endpoint) and 6 months (secondary endpoint). Specificity and sensitivity of different thresholds of SSEP amplitudes, alone or in combination with other prognostic markers, were calculated. Results: Among 82 patients, a poor outcome (CPC 3-5) was observed in 78% of patients at 3 months. The median time to SSEP recording was 3(2-4) days after CA, with a pattern "bilaterally absent" in 19 patients, "unilaterally present" in 4, and "bilaterally present" in 59 patients. The median N20-b amplitudes were different between patients with poor and good outcomes, i.e., 0.93 [0-2.05]µV vs. 1.56 [1.24-2.75]µV, respectively (p < 0.0001), as the median N20-P25 amplitudes (0.57 [0-1.43]µV in poor outcome vs. 2.64 [1.39-3.80]µV in good outcome patients p < 0.0001). An N20-b > 2 µV predicted good outcome with a specificity of 73% and a moderate sensitivity of 39%, although an N20-P25 > 3.2 µV was 93% specific and only 30% sensitive. A low voltage N20-b < 0.88 µV and N20-P25 < 1 µV predicted poor outcome with a high specificity (sp = 94% and 93%, respectively) and a moderate sensitivity (se = 50% and 66%). Association of "bilaterally absent or low voltage SSEP" patterns increased the sensitivity significantly as compared to "bilaterally absent" SSEP alone (se = 58 vs. 30%, p = 0.002) for prediction of poor outcome. Conclusion: In comatose patient after CA, both N20-b and N20-P25 amplitudes could predict both good and poor outcomes with high specificity but low to moderate sensitivity. Our results suggest that caution is needed regarding SSEP amplitudes in clinical routine, and that these indicators should be used in a multimodal approach for prognostication after cardiac arrest.
Hematopoietic stem cell transplant (HSCT) recipients are at high-risk for severe COVID-19 and have altered immune responses to vaccination. We sought to evaluate the dynamics of immune response to BNT162b2 mRNA vaccine in HSCT recipients. We systematically proposed vaccination with BNT162b2 to HSCT recipients and gave a third vaccine dose to those showing titers of IgG(S-RBD) below 4160 AU/mL 1 month following the second dose. We then quantified anti-SARS-CoV-2 antibodies dynamics in 133 of these HSCT recipients (88 after two and 45 after three vaccine doses) 6 months after the first vaccine dose. Mean IgG(S-RBD) titer at 6 months was significantly lower than the peak value measured 1 month after a second ( p < 0.001) or third ( p < 0.01) vaccine dose. IgG(S-RBD) titers at 6 months were strongly correlated to peak values ( p < 0.001) and a peak titer above 10,370 AU/mL predicted persistent protection at 6 months. Seventy-two percent (96/133) of patients retained protective antibody levels at 6 months. Immunosuppressive drugs and low lymphocyte counts in peripheral blood correlated with lower IgG(S-RBD) titers at 6 months. Four patients (3%) developed PCR-documented SARS-CoV-2 infection and one died.
In two “départements” in the South-West of France, bovine tuberculosis (bTB) outbreaks due to Mycobacterium bovis spoligotype SB0821 have been identified in cattle since 2002 and in wildlife since 2013. Using whole genome sequencing, the aim of our study was to clarify badger contribution to bTB transmission in this area. We used a Bayesian evolutionary model, to infer phylogenetic trees and migration rates between two pathogen populations defined by their host-species. In order to account for sampling bias, sub-population structure was inferred using the marginal approximation of the structured coalescent (Mascot) implemented in BEAST2. We included 167 SB0821 strains (21 isolated from badgers and 146 from cattle) and identified 171 single nucleotide polymorphisms. We selected a HKY model and a strict molecular clock. We estimated a badger-to-cattle transition rate (median: 2.2 transitions/lineage/year) 52 times superior to the cattle-to-badger rate (median: 0.042 transitions/lineage/year). Using the maximum clade credibility tree, we identified that over 75% of the lineages from 1989 to 2000 were present in badgers. In addition, we calculated a median of 64 transition events from badger-to-cattle (IQR: 10–91) and a median of zero transition event from cattle-to-badger (IQR: 0–3). Our model enabled us to infer inter-species transitions but not intra-population transmission as in previous epidemiological studies, where relevant units were farms and badger social groups. Thus, while we could not confirm badgers as possible intermediaries in farm-to-farm transmission, badger-to-cattle transition rate was high and we confirmed long-term presence of M. bovis in the badger population in the South-West of France.
Background Intensive care unit (ICU) patients often endure discomfort and distress brought about by their medical environment and the subjective experience of their stay. Distress, pain, and loss of control are important predictors of future neuropsychiatric disorders. Depression, anxiety, and post-traumatic stress are common after discharge. We aimed at mitigating acute stress and discomfort via a novel intervention based on body image rehabilitation and rehabilitation of senses performed following a holistic approach guided by positive communication (corporeal rehabilitation care, CRC). Results We conducted a prospective observational study on 297 consecutively enrolled patients participating in at least one CRC session. Benefits of CRC were assessed on both subjective analogical scales of stress, pain, and well-being criteria, and objective clinical measures of dyspnea, respiratory rate, and systolic arterial pressure, just after CRC and long after (a median of 72 min later) to estimate its remote effect. Results showed that CRC had a positive effect on all overt measures of distress (acute stress, pain, discomfort) just after CRC and remotely. This beneficial effect was also observed on dyspnea and respiratory rate. Results also showed that best CRC responders had higher baseline values of stress and heart rate and lower baseline values of well-being score, indicating that the care targeted the population most at risk of developing psychological sequelae. Interestingly, a positive CRC response was associated with a better survival even after adjustment for physiologic severity, indicating a potential to identify patients prompt to better respond to other therapeutics and/or rehabilitation. Conclusion This study demonstrated the feasibility of an innovative holistic patient-centered care approach and its short-term positive effects on critical parameters that are considered risk factors for post-intensive care syndrome. Further studies are warranted to study long-term benefits for patients, and overall benefits for relatives as well as ICU staff.
Background Targeted temperature management at 33 °C (TTM33) has been employed in effort to mitigate brain injury in unconscious survivors of out-of-hospital cardiac arrest (OHCA). Current guidelines recommend prevention of fever, not excluding TTM33. The main objective of this study was to investigate if TTM33 is associated with mortality in patients with vasopressor support on admission after OHCA. Methods We performed a post hoc analysis of patients included in the TTM-2 trial, an international, multicenter trial, investigating outcomes in unconscious adult OHCA patients randomized to TTM33 versus normothermia. Patients were grouped according to level of circulatory support on admission: (1) no-vasopressor support, mean arterial blood pressure (MAP) ≥ 70 mmHg; (2) moderate-vasopressor support MAP < 70 mmHg or any dose of dopamine/dobutamine or noradrenaline/adrenaline dose ≤ 0.25 µg/kg/min; and (3) high-vasopressor support, noradrenaline/adrenaline dose > 0.25 µg/kg/min. Hazard ratios with TTM33 were calculated for all-cause 180-day mortality in these groups. Results The TTM-2 trial enrolled 1900 patients. Data on primary outcome were available for 1850 patients, with 662, 896, and 292 patients in the, no-, moderate-, or high-vasopressor support groups, respectively. Hazard ratio for 180-day mortality was 1.04 [98.3% CI 0.78–1.39] in the no-, 1.22 [98.3% CI 0.97–1.53] in the moderate-, and 0.97 [98.3% CI 0.68–1.38] in the high-vasopressor support groups with regard to TTM33. Results were consistent in an imputed, adjusted sensitivity analysis. Conclusions In this exploratory analysis, temperature control at 33 °C after OHCA, compared to normothermia, was not associated with higher incidence of death in patients stratified according to vasopressor support on admission. Trial registration Clinical trials identifier NCT02908308 , registered September 20, 2016.
Advances in conducting polymer-based nanocomposites (CPNCs) as sensing materials offer unique prospects to apprehend previously inaccessible sensing properties and applications. In this review article, the synthesis and properties of CPNCs are highlighted as pioneer transducers for designing advanced sensing devices. Synthetic strategies of CPNC are also discussed in the brief and classified into ex-situ and in-situ categories employing (1) chemical; (2) electrochemical; (3) photochemical; and (4) hybrid approach. The composite structure of conducting polymers (CPs), with inorganic and organic compounds, has enhanced surface adsorption, responsiveness, catalytic, and/or electron transport behavior for sensing applications. Thus, CPNCs are explored to sense atmospheric gases, humidity, explosives, water pollutants, and food adulterants. The literature reveals that sensor technology has been effectively improved in terms of sensitivity and selectivity due to progress in CPNCs. However, there are still several technical challenges that need to be solved for CPNCs based sensor technology. Herein, the key issues regarding the use of CPNC based materials in the development of state-of-the-art sensors are discussed. Furthermore, a perspective on the next-generation sensor technology concerning materials has been demonstrated with exclusive examples of conducting polymers based nano composite.
COPD is a progressive and debilitating disease often diagnosed after 50 years of age, but more recent evidence suggests that its onset could originate very early on in life. In this context, exposure to air pollution appears to be a potential contributor. Although the potential role of air pollution as an early determinant of COPD is emerging, knowledge gaps still remain, including an accurate qualification of air pollutants (number of pollutants quantified and exact composition) or the “one exposure–one disease” concept, which might limit the current understanding. To fill these gaps, improvements in the field are needed, such as the use of atmosphere simulation chambers able to realistically reproduce the complexity of air pollution, consideration of the exposome, as well as improving exchanges between paediatricians and adult lung specialists to take advantage of reciprocal expertise. This review should lead to a better understanding of the current knowledge on air pollution as an early determinant of COPD, as well as identify the existing knowledge gaps and opportunities to fill them. Hopefully, this will lead to better prevention strategies to scale down the development of COPD in future generations.
Immunotherapy has gained great interest in thoracic malignancies in the last decade, first in non-small cell lung cancer (NSCLC), but also more recently in small-cell lung cancer (SCLC) and malignant pleural mesothelioma (MPM). However, while 15–20% of patients will greatly benefit from immune checkpoint blockers (ICBs), a vast majority will rapidly exhibit resistance. Reasons for this are multiple: non-immunogenic tumors, immunosuppressive tumor microenvironment or defects in immune cells trafficking to the tumor sites being some of the most frequent. Current progress in adoptive cell therapies could offer a way to overcome these hurdles and bring effective immune cells to the tumor site. In this review, we discuss advantages, limits and future perspectives of adoptive cell therapy (ACT) in thoracic malignancies from lymphokine-activated killer cells (LAK), cytokine-induced killer cells (CIK), natural killer cells (NK), dendritic cells (DC) vaccines and tumor-infiltrating lymphocytes (TILs) to TCR engineering and CARs. Trials are still in their early phases, and while there may still be many limitations to overcome, a combination of these different approaches with ICBs, chemotherapy and/or radiotherapy could vastly improve the way we treat thoracic cancers.
Introduction A significant number of patients with a peripheral neuropathy have IgM monoclonal gammopathy (IgM-MG). In this work, we encompassed the spectrum and outcome of IgM-related neuropathies (IgM-NP) in a large monocentric cohort of patients with IgM-MG. Methods We retrospectively reviewed the neurological and hematological findings and the course of neuropathy in all patients with IgM-MG over a five-year period in our center (Henri Mondor hospital, Assistance Publique Hôpitaux de Paris (APHP), France). Results Among 550 patients with IgM-MG, 83 patients (15%) had IgM-NP (55 males, mean age 67 y.o.). The median serum level of IgM-MG was 3.4 g/L, mostly kappa light chain component. The hematological diagnosis was Monoclonal Gammopathy of Undetermined Significance (MGUS) in 62 patients. Anti-MAG antibodies were detected in 38 patients with heterogeneous clinical and neurophysiological features. Four patients had neurolymphomatosis presenting as a non-length dependent predominantly motor neuropathy, which occurred long after the finding of IgM-MG and was responsive to hematological treatment. Five patients had an AL amyloid neuropathy revealed by a small fiber neuropathy. Finally, 30 patients were classified as “Neuropathy of Uncertain Relationship with the IgM” (NURIM) with characteristics close to those of an anti-MAG-NP at the time of diagnosis, except for the neurophysiological features with a predominant axonal pattern. Conclusion This study emphasizes the wide spectrum of IgM-NP associated with a variety of hematological diagnoses. In particular, the course and prognosis vary considerably. In this setting, further studies are needed to unravel the group of patients classified as NURIM.
This study explores the relationship between founder CEOs and corporate social responsibility (CSR). We use 1093 firm-year observations and CSR scores (Environment, Business Behavior, Community Involvement, etc.) from Vigeo-Eiris, the leading European social rating agency. As lone and family founders develop differentiated and statistically significant behaviors toward CSR, our results suggest that founders’ social context is important. More precisely, we provide evidence that lone founders are less likely to invest in external CSR than are other CEOs. In contrast, their behavior toward internal CSR is not statistically different from that of non-founder CEOs. Conversely, family founders are more likely to invest in internal CSR activities. In addition, our results are strongly moderated by CEOs’ age, indicating non-homogenous behavior toward CSR over time and suggesting a tendency to instrumentalize their CSR investments to address personal and family agendas.
A sensitive and rapid liquid chromatography-tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous determination of tryptophan (Trp) and ten metabolites of kynurenine pathway, including kynurenine (Kyn), 3-hydroxy-kynurenine (3-HK), kynurenic acid (KA), xanthurenic acid (XA), 3-Hydroxy-anthranilic acid (3-HANA), quinolinic acid (QA), nicotinic acid mononucleotide (NaMN), picolinic acid (Pic), nicotinamide (NAM) and nicotinic acid (NA) in both plasma and urine. This LC-MS/MS method was used to predict the occurrence of acute kidney injury (AKI) in a cohort of patients with cardiac surgery under cardiopulmonary bypass (CPB). Urinary concentrations of Pic, as well as Pic to Trp and Pic to 3-HANA ratios were highly predictive of an AKI episode the week after CPB, indicating that Pic could be a predictive biomarker of AKI. Thus, monitoring the kynurenine pathway activity with this LC–MS/MS method is a clinically relevant tool to identify new biomarkers of kidney injury.
Background Muscle-invasive bladder cancer (MIBC) and upper urinary tract urothelial carcinoma (UTUC) are molecularly heterogeneous. Despite chemotherapies, immunotherapies, or anti-fibroblast growth factor receptor (FGFR) treatments, these tumors are still of a poor outcome. Our objective was to develop a bank of patient-derived xenografts (PDXs) recapitulating the molecular heterogeneity of MIBC and UTUC, to facilitate the preclinical identification of therapies. Methods Fresh tumors were obtained from patients and subcutaneously engrafted into immune-compromised mice. Patient tumors and matched PDXs were compared regarding histopathology, transcriptomic (microarrays), and genomic profiles [targeted Next-Generation Sequencing (NGS)]. Several PDXs were treated with chemotherapy (cisplatin/gemcitabine) or targeted therapies [FGFR and epidermal growth factor (EGFR) inhibitors]. Results A total of 31 PDXs were established from 1 non-MIBC, 25 MIBC, and 5 upper urinary tract tumors, including 28 urothelial (UC) and 3 squamous cell carcinomas (SCCs). Integrated genomic and transcriptomic profiling identified the PDXs of three different consensus molecular subtypes [basal/squamous (Ba/Sq), luminal papillary, and luminal unstable] and included FGFR3 -mutated PDXs. High histological and genomic concordance was found between matched patient tumor/PDX. Discordance in molecular subtypes, such as a Ba/Sq patient tumor giving rise to a luminal papillary PDX, was observed (n=5) at molecular and histological levels. Ten models were treated with cisplatin-based chemotherapy, and we did not observe any association between subtypes and the response. Of the three Ba/Sq models treated with anti-EGFR therapy, two models were sensitive, and one model, of the sarcomatoid variant, was resistant. The treatment of three FGFR3-mutant PDXs with combined FGFR/EGFR inhibitors was more efficient than anti-FGFR3 treatment alone. Conclusions We developed preclinical PDX models that recapitulate the molecular heterogeneity of MIBCs and UTUC, including actionable mutations, which will represent an essential tool in therapy development. The pharmacological characterization of the PDXs suggested that the upper urinary tract and MIBCs, not only UC but also SCC, with similar molecular characteristics could benefit from the same treatments including anti-FGFR for FGFR3-mutated tumors and anti-EGFR for basal ones and showed a benefit for combined FGFR/EGFR inhibition in FGFR3-mutant PDXs, compared to FGFR inhibition alone.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
348 members
Zied Frikha
  • l'Institut lorrain du cœur et des vaisseaux Louis Mathieu
Chaohui Wang
  • Laboratoire d'Informatique Gaspard-Monge UMR 8049 CNRS (LIGM)
René Natowicz
  • ESIEE-Paris
Céline Guivarch
  • Centre International de Recherche sur l’Environnement et le Développement (CIRED) UMR 8568 CNRS
Olivier Curé
  • Laboratoire d'Informatique Gaspard-Monge UMR 8049 CNRS (LIGM)
Descartes, France