Recent PublicationsView all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-coding transcripts play an important role in gene expression regulation in all species, including budding and fission yeast. Such regulatory transcripts include intergenic ncRNA (non-coding RNA), 5' and 3' UTRs, introns and antisense transcripts. In the present review, we discuss advantages and limitations of recently developed sequencing techniques, such as ESTs, DNA microarrays, RNA-Seq (RNA sequencing), DRS (direct RNA sequencing) and TIF-Seq (transcript isoform sequencing). We provide an overview of methods applied in yeast and how each of them has contributed to our knowledge of gene expression regulation and transcription.
    Full-text · Article · Dec 2013 · Biochemical Society Transactions
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue.
    Full-text · Article · Nov 2013 · Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polyadenylation of pre-mRNAs, a critical step in eukaryotic gene expression, is mediated by cis elements collectively called the polyadenylation signal. Genome-wide analysis of such polyadenylation signals was missing in fission yeast, even though it is an important model organism. We demonstrate that the canonical AATAAA motif is the most frequent and functional polyadenylation signal in Schizosaccharomyces pombe. Using analysis of RNA-Seq data sets from cells grown under various physiological conditions, we identify 3' UTRs for nearly 90% of the yeast genes. Heterogeneity of cleavage sites is common, as is alternative polyadenylation within and between conditions. We validated the computationally identified sequence elements likely to promote polyadenylation by functional assays, including qRT-PCR and 3'RACE analysis. The biological importance of the AATAAA motif is underlined by functional analysis of the genes containing it. Furthermore, it has been shown that convergent genes require trans elements, like cohesin for efficient transcription termination. Here we show that convergent genes lacking cohesin (on chromosome 2) are generally associated with longer overlapping mRNA transcripts. Our bioinformatic and experimental genome-wide results are summarized and can be accessed and customized in a user-friendly database Pomb(A).
    No preview · Article · Oct 2013 · RNA
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.