36
201.14
5.59
55

Recent PublicationsView all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the different factors that may influence parasite virulence is of fundamental interest to ecologists and evolutionary biologists. It has recently been demonstrated that parasite virulence may occur partly through manipulation of host competitive ability. Differences in competitive ability associated with the social status (dominant or subordinate) of a host may determine the extent of this competition-mediated parasite virulence. We proposed that differences between subordinate and dominant birds in the physiological costs of infection may change depending on the level of competition in social groups. We observed flocks of domestic canaries to determine dominant or subordinate birds, and modified competition by providing restricted (high competition) or ad libitum food (low competition). Entire flocks were then infected with either the avian malaria parasite, Plasmodium relictum or a control. Contrary to our predictions we found that the level of competition had no effect on the outcome of infection for dominant or subordinate birds. We found that dominant birds appeared to suffer greater infection mediated morbidity in both dietary treatments, with a higher and more sustained reduction in haematocrit, and higher parasitaemia, than subordinates. Our results show that dominance status in birds can certainly alter parasite virulence, though the links between food availability, competition, nutrition and virulence are likely to be complex and multifaceted.
    Full-text · Article · Oct 2013 · Experimental Parasitology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In biparental systems, members of the same pair can vary substantially in the amount of parental care they provide to offspring. The extent of this asymmetry should depend on the relative costs and benefits of care. Individual variation in personality is likely to influence this trade-off, and hence is a promising candidate to explain differences in care. In addition, plasticity in parental care may also be associated with personality differences. Using exploration behaviour (EB) as a measure of personality, we investigated these possibilities using both natural and experimental data from a wild population of great tits (Parus major). Contrary to predictions, we found no association between EB and natural variation in provisioning behaviour. Nor was EB linked to responsiveness to experimentally increased brood demand. These results are initially surprising given substantial data from other studies suggesting personality should influence investment in parental care. However, they are consistent with a recent study showing selection on EB is weak and highly context-specific in the focal population. This emphasises the difficulty faced by personality studies attempting to make predictions based on previous work, given that personalities often vary among populations of the same species.
    Full-text · Article · Oct 2011 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress is the unifying feature underlying the toxicity of anthropogenic pollution (e.g., heavy metals, polycyclic aromatic hydrocarbons, and nitrogen-oxides) and the ultimate culprit in the development of many diseases. Yet, there has been no attempt to summarize the published data on wild terrestrial animals to reveal general trends regarding the effects of pollution on oxidative stress. The main findings of this meta-analysis reveal that, as predicted, there is an overall increase in oxidative stress when exposed to pollution. This is mainly due to a weak overall increase of oxidative damages, although there is some variation across taxa. The reduced form of glutathione (GSH) and its associated enzymes are the most reliable biomarkers. This result is important when choosing biomarkers and when using less-invasive sampling of endangered species, or for longitudinal approaches. To be able to predict future population outcomes, possible treatments, but also evolutionary responses to a changing environment, a greater integration of biotic factors such as temperature, bioavailability of toxic elements, and species-specific responses are needed.
    Full-text · Article · Sep 2010 · EcoHealth
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.