52
176.13
3.39
134

Recent PublicationsView all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoarthritis (OA) is a debilitating chronic condition widely prevalent in ageing populations. Because the pathology of the disease includes cartilage erosion and joint remodelling, OA patients experience a great deal of pain. Despite numerous studies, details of OA are frequently inseparable from other types of chronic pain, and its causes are unknown. In most circumstances in OA, the cartilage lacks afferent innervation, although other joint tissues contain nociceptive neurones. In addition to physical joint damage, there is a strong element of joint inflammation. Genetic studies have identified several associations between ion channels and OA pain, including NaV1.7, P2X7, and TRPV1, but several other channels have also been implicated. Many ion channels involved with OA pain are common to those seen in inflammatory pain. This review considers causes of OA pain and discusses three possible pain-reducing strategies involving ion channel modulation: chondroprotection, innate afferent nerve inhibition, and inhibition of inflammatory hyperalgesia. Future targets for OA pain analgesia could involve a number of ion channels.
    Full-text · Article · Dec 2013 · Current Pain and Headache Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue sensitisation and chronic pain have been described in chronic-active laminitis in the horse, making treatment of such cases difficult. Purinergic P2X receptors are linked to chronic pain and inflammation. The aim of this study was to examine the expression of purinergic P2X receptor subtypes 1, 2, 3 and 7 in the hoof, palmar digital vessels and nerve, dorsal root ganglia and spinal cord in horses with chronic-active laminitis (n=5) compared to non-laminitic horses (n=5). Immunohistochemical analysis was performed on tissue sections using antibodies against P2X receptor subtypes 1-3 and 7. In horses with laminitis, there was a reduction in the thickness of the tunica media layer of the palmar digital vein as a proportion of the whole vessel diameter (0.48±0.05) compared to the non-laminitic group (0.57±0.04; P=0.02). P2X receptor subtype 3 was expressed in the smooth muscle layer (tunica media) of the palmar digital artery of horses with laminitis, but was absent in horses without laminitis. There was strong expression of P2X receptor subtype 7 in the proliferating, partially keratinised, epidermal cells of the secondary epidermal lamellae in the hooves of horses with laminitis, but no immunopositivity in horses without laminitis.
    Full-text · Article · Aug 2013 · The Veterinary Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: Osteochondral lesions are a major cause of pain and disability in several species including dogs, horses and human beings. The objective of this study was to assess three potential sources of canine cells for their osteochondral regenerative potential. Cartilage, synovium and adipose tissue cells were grown in pellet culture in chondrogenic or osteogenic media. Cartilage-derived pellets displayed the best chondrogenic differentiation as indicated by significantly higher COL2A1 and SOX9 mRNA expression, greater glycosaminoglycan content, and higher retention of Safranin-O stain compared to the synovium and adipose-derived cells. Following application of the osteogenic media, all three cell sources exhibited small areas of positive alizarin red staining. Poor intracellular alkaline phosphatase activity was found in all three cell types when stimulated although osteocalcin and RUNX2 expression were significantly increased. Cells isolated and cultured from canine articular cartilage retained their specific chondrocytic phenotype. Furthermore, canine adipocytes and synovial cells did not undergo chondrogenic differentiation and did not exhibit evidence of multipotency. Although osteogenic differentiation was initiated at a genomic level, phenotypic osteoblastic differentiation was not observed. The findings of this study suggest that cells isolated from canine adipose tissue and synovium are sub-optimal substitutes for chondrocytes when engineering articular cartilage in vitro.
    No preview · Article · Jul 2013 · The Veterinary Journal
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.