24
48.16
2.01
74

Recent PublicationsView all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: What are all the species of pathogen that affect our livestock? As 6 out of every 10 human pathogens came from animals, with a good number from livestock and pets, it seems likely that the majority that emerge in the future, and which could threaten or devastate human health, will come from animals. Only 10 years ago, the first comprehensive pathogen list was compiled for humans; we still have no equivalent for animals. Here we describe the creation of a novel pathogen database, and present outputs from the database that demonstrate its value. The ENHanCEd Infectious Diseases database (EID2) is open-access and evidence-based, and it describes the pathogens of humans and animals, their host and vector species, and also their global occurrence. The EID2 systematically collates information on pathogens into a single resource using evidence from the NCBI Taxonomy database, the NCBI Nucleotide database, the NCBI MeSH (Medical Subject Headings) library and PubMed. Information about pathogens is assigned using data-mining of meta-data and semi-automated literature searches. Here we focus on 47 mammalian and avian hosts, including humans and animals commonly used in Europe as food or kept as pets. Currently, the EID2 evidence suggests that:
    Full-text · Article · Jul 2013 · Preventive Veterinary Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salmonella spp are a major foodborne zoonotic cause of human illness. Consumption of pork products is believed to be a major source of human salmonellosis and Salmonella control throughout the food-chain is recommended. A number of on-farm interventions have been proposed, and some have been implemented in order to try to achieve Salmonella control. In this study we utilize previously developed models describing Salmonella dynamics to investigate the potential effects of a range of these on-farm interventions. As the models indicated that the number of bacteria shed in the faeces of an infectious animal was a key factor, interventions applied within a high-shedding scenario were also analysed. From simulation of the model, the probability of infection after Salmonella exposure was found to be a key driver of Salmonella transmission. The model also highlighted that minimising physiological stress can have a large effect but only when shedding levels are not excessive. When shedding was high, weekly cleaning and disinfection was not effective in Salmonella control. However it is possible that cleaning may have an effect if conducted more often. Furthermore, separating infectious animals, shedding bacteria at a high rate, from the rest of the population was found to be able to minimise the spread of Salmonella.
    Full-text · Article · Jun 2013 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eradicating disease from livestock populations involves the balancing act of removing sufficient numbers of diseased animals without removing too many healthy individuals in the process. As ever more tests for bovine tuberculosis (BTB) are carried out on the UK cattle herd, and each positive herd test triggers more testing, the question arises whether 'false positive' results contribute significantly to the measured BTB prevalence. Here, this question is explored using simple probabilistic models of test behaviour. When the screening test is applied to the average UK herd, the estimated proportion of test-associated false positive new outbreaks is highly sensitive to small fluctuations in screening test specificity. Estimations of this parameter should be updated as a priority. Once outbreaks have been confirmed in screening-test positive herds, the following rounds of intensive testing with more sensitive, albeit less specific, tests are highly likely to remove large numbers of false positive animals from herds. Despite this, it is unlikely that significantly more truly infected animals are removed. BTB test protocols should become based on quantified risk in order to prevent the needless slaughter of large numbers of healthy animals.
    Full-text · Article · May 2013 · PLoS ONE
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.