6,866.45
3.29
11,775

Recent PublicationsView all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-period quasi-periodic pulsations (QPPs) of solar flares are a class apart from shorter period events. By involving an external resonator, the mechanism they call upon differs from traditional QPP models, but has wider applications. We present a multi-wavelength analysis of spatially resolved QPPs, with periods around 10 minutes, observed in the X-ray spectrum primarily at energies between 3 and 25 keV. Complementary observations obtained in Hα and radio emission in the kHz to GHz frequency range, together with an analysis of the X-ray plasma properties provide a comprehensive picture that is consistent with a dense flaring loop subject to periodic energization and thermalization. The QPPs obtained in Hα and type III radio bursts, with similar periods as the QPPs in soft X-rays, have the longest periods ever reported for those types of data sets. We also report 1–2 GHz radio emission, concurrent with but unrestricted to the QPP time intervals, which is multi-structured at regularly separated narrowband frequencies and modulated with ∼18 minute periods. This radio emission can be attributed to the presence of multiple "quiet" large-scale loops in the background corona. Large scale but shorter inner loops below may act as preferential resonators for the QPPs. The observations support interpretations consistent with both inner and outer loops subject to fast kink magnetohydrodynamic waves. Finally, X-ray imaging indicates the presence of double coronal sources in the flaring sites, which could be the particular signatures of the magnetically linked inner loops. We discuss the preferential conditions and the driving mechanisms causing the repeated flaring.
    Full-text · Article · Mar 2016 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: A linearly polarized photon beam has been produced at MAX-lab using the coherent bremsstrahlung of electrons with an energy of 192.6 MeV in a 0.1 mm thick diamond crystal. The intensity and shape of the coherent maxima and their dependence on the crystal orientation are similar to the features observed at higher electron energies (~ 1 GeV) and are well described by coherent bremsstrahlung theory. The linear polarization of the uncollimated beam at the coherent peak energy ≈50–60 MeV is about 20% and can be increased to 40–45% if collimation of half the characteristic angle is used. At present the degree of polarization is high enough to allow the study of polarization observables in photo-nuclear reactions at MAX-lab in the energy range from Giant Dipole Resonance up to ≈80 MeV.
    No preview · Article · Nov 2014 · Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quark and gluon jets with the same energy, 24 GeV, are compared in symmetric three-jet configurations from hadronic Z decays observed by the ALEPH detector. Jets are defined using the Durham algorithm. Gluon jets are identified using an anti-tag on b jets, based on a track impact parameter method. The comparison of gluon and mixed flavour quark jets shows that gluon jets have a softer fragmentation function, a larger angular width and a higher particle multiplicity, Evidence is presented which shows that the corresponding differences between gluon and b jets are significantly smaller. In a statistically limited comparison the multiplicity in c jets was found to be comparable with that observed for the jets of mixed quark flavour.
    Full-text · Article · Oct 2014 · Physics Letters B
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.
View all

Top publications last week by reads

 
Journal of Physics G Nuclear and Particle Physics 01/2007; 34:995.
42 Reads
 
European Physical Journal C 11/2014; DOI:10.1140/epjc/s10052-014-3026-9
31 Reads