681
2,212.45
3.25
540

Recent PublicationsView all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Several slimming aids being sold as food supplements are widely available. One of them is pyruvate. Its efficacy in causing weight reduction in humans has not been fully established. The objective of this systematic review was to examine the efficacy of pyruvate in reducing body weight. Methods: Electronic and nonelectronic searches were conducted to identify all relevant human randomized clinical trials. The bibliographies of all located articles were also searched. No restrictions in language or time were applied. Two independent reviewers extracted the data according to predefined criteria. A fixed-effect model was used to calculate mean differences (MD) and 95% confidence interval (CI). Results: Nine trials were identified and 6 were included. All had methodological weaknesses. The meta-analysis revealed a statistically significant difference in body weight with pyruvate compared to placebo (MD: -0.72 kg; 95% CI: -1.24 to -0.20). The magnitude of the effect is small, and its clinical relevance is uncertain. Adverse events included gas, bloating, diarrhea, and increase in low-density lipoprotein (LDL) cholesterol. Conclusion: The evidence from randomized clinical trials does not convincingly show that pyruvate is efficacious in reducing body weight. Limited evidence exists about the safety of pyruvate. Future trials involving the use of this supplement should be more rigorous and better reported.
    Full-text · Article · Jan 2014 · Critical reviews in food science and nutrition
  • [Show abstract] [Hide abstract]
    ABSTRACT: Together with carbon monoxide (CO), nitric oxide (̇NO) and hydrogen sulfide (H2S) form a group of physiologically important gaseous transmitters, sometimes referred to as the “gaseous triumvirate”. The three molecules share a wide range of physical and physiological properties: they are small gaseous molecules, able to freely penetrate cellular membranes; they are all produced endogenously in the body and they seem to exert similar biological functions. In the cardiovascular system, for example, they are all vasodilators, promote angiogenesis and protect tissues against damage (e.g. ischemia-reperfusion injury). In addition, they have complex roles in inflammation, with both pro- and anti-inflammatory effects reported. Researchers have focused their efforts in understanding and describing the roles of each of these molecules in different physiological systems, and in the past years attention has also been given to the gases interaction or “cross-talk”. This review will focus on the role of ̇NO and H2S in inflammation and will give an overview of the evidence collected so far suggesting the importance of their cross-talk in inflammatory processes.
    No preview · Article · Jan 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: The intake of whey, compared with casein and soy protein intakes, stimulates a greater acute response of muscle protein synthesis (MPS) to protein ingestion in rested and exercised muscle. We characterized the dose-response relation of postabsorptive rates of myofibrillar MPS to increasing amounts of whey protein at rest and after exercise in resistance-trained, young men. Volunteers (n = 48) consumed a standardized, high-protein (0.54 g/kg body mass) breakfast. Three hours later, a bout of unilateral exercise (8 × 10 leg presses and leg extensions; 80% one-repetition maximum) was performed. Volunteers ingested 0, 10, 20, or 40 g whey protein isolate immediately (∼10 min) after exercise. Postabsorptive rates of myofibrillar MPS and whole-body rates of phenylalanine oxidation and urea production were measured over a 4-h postdrink period by continuous tracer infusion of labeled [(13)C6] phenylalanine and [(15)N2] urea. Myofibrillar MPS (±SD) increased (P < 0.05) above 0 g whey protein (0.041 ± 0.015%/h) by 49% and 56% with the ingestion of 20 and 40 g whey protein, respectively, whereas no additional stimulation was observed with 10 g whey protein (P > 0.05). Rates of phenylalanine oxidation and urea production increased with the ingestion of 40 g whey protein. A 20-g dose of whey protein is sufficient for the maximal stimulation of postabsorptive rates of myofibrillar MPS in rested and exercised muscle of ∼80-kg resistance-trained, young men. A dose of whey protein >20 g stimulates amino acid oxidation and ureagenesis. This trial was registered at http://www.isrctn.org/ as ISRCTN92528122.
    No preview · Article · Nov 2013 · American Journal of Clinical Nutrition
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.
View all

Top publications last week by reads

 
Exercise and Sport Sciences Reviews 02/2016; DOI:10.1249/JES.0000000000000074
174 Reads
 
International journal of sports physiology and performance 09/2013; 9(4). DOI:10.1123/IJSPP.2013-0207
58 Reads