University of East Anglia
  • Norwich, Norfolk, United Kingdom
Recent publications
Based on research from previous pandemics, studies of critical care survivors, and emerging COVID-19 data, we estimate that up to 30% of survivors of severe COVID will develop PTSD. PTSD is frequently undetected across primary and secondary care settings and the psychological needs of survivors may be overshadowed by a focus on physical recovery. Delayed PTSD diagnosis is associated with poor outcomes. There is a clear case for survivors of severe COVID to be systematically screened for PTSD, and those that develop PTSD should receive timely access to evidence-based treatment for PTSD and other mental health problems by multidisciplinary teams.
Ruminococcus gnavus is a prevalent member of the human gut microbiota, which is over-represented in inflammatory bowel disease and neurological disorders. We previously showed that the ability of R. gnavus to forage on mucins is strain-dependent and associated with sialic acid metabolism. Here, we showed that mice monocolonized with R. gnavus ATCC 29149 (Rg-mice) display changes in major sialic acid derivatives in their cecum content, blood, and brain, which is accompanied by a significant decrease in the percentage of sialylated residues in intestinal mucins relative to germ-free (GF) mice. Changes in metabolites associated with brain function such as tryptamine, indolacetate, and trimethylamine N-oxide were also detected in the cecal content of Rg-mice when compared to GF mice. Next, we investigated the effect of R. gnavus monocolonization on hippocampus cell proliferation and behavior. We observed a significant decrease of PSA-NCAM immunoreactive granule cells in the dentate gyrus (DG) of Rg-mice as compared to GF mice and recruitment of phagocytic microglia in the vicinity. Behavioral assessments suggested an improvement of the spatial working memory in Rg-mice but no change in other cognitive functions. These results were also supported by a significant upregulation of genes involved in proliferation and neuroplasticity. Collectively, these data provide first insights into how R. gnavus metabolites may influence brain regulation and function through modulation of granule cell development and synaptic plasticity in the adult hippocampus. This work has implications for further understanding the mechanisms underpinning the role of R. gnavus in neurological disorders.
Background: Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) allows quantification of biventricular blood flow by flow components and kinetic energy (KE) analyses. However, it remains unclear whether 4D flow parameters can predict cardiopulmonary exercise testing (CPET) as a clinical outcome in repaired tetralogy of Fallot (rTOF). Current study aimed to (1) compare 4D flow CMR parameters in rTOF with age- and gender-matched healthy controls, (2) investigate associations of 4D flow parameters with functional and volumetric right ventricular (RV) remodelling markers, and CPET outcome. Methods: Sixty-three rTOF patients (14 paediatric, 49 adult; 30 ± 15 years; 29 M) and 63 age- and gender-matched healthy controls (14 paediatric, 49 adult; 31 ± 15 years) were prospectively recruited at four centers. All underwent cine and 4D flow CMR, and all adults performed standardized CPET same day or within one week of CMR. RV remodelling index was calculated as the ratio of RV to left ventricular (LV) end-diastolic volumes. Four flow components were analyzed: direct flow, retained inflow, delayed ejection flow and residual volume. Additionally, three phasic KE parameters normalized to end-diastolic volume (KEiEDV), were analyzed for both LV and RV: peak systolic, average systolic and peak E-wave. Results: In comparisons of rTOF vs. healthy controls, median LV retained inflow (18% vs. 16%, P = 0.005) and median peak E-wave KEiEDV (34.9 µJ/ml vs. 29.2 µJ/ml, P = 0.006) were higher in rTOF; median RV direct flow was lower in rTOF (25% vs. 35%, P < 0.001); median RV delayed ejection flow (21% vs. 17%, P < 0.001) and residual volume (39% vs. 31%, P < 0.001) were both greater in rTOF. RV KEiEDV parameters were all higher in rTOF than healthy controls (all P < 0.001). On multivariate analysis, RV direct flow was an independent predictor of RV function and CPET outcome. RV direct flow and RV peak E-wave KEiEDV were independent predictors of RV remodelling index. Conclusions: In this multi-scanner multicenter 4D flow CMR study, reduced RV direct flow was independently associated with RV dysfunction, remodelling and, to a lesser extent, exercise intolerance in rTOF patients. This supports its utility as an imaging parameter for monitoring disease progression and therapeutic response in rTOF. Clinical Trial Registration https://www.clinicaltrials.gov . Unique identifier: NCT03217240.
Muons are particles with a spin of ½ that can be implanted into a wide range of condensed matter materials to act as a local probe of the surrounding atomic environment. Measurement of the muon’s precession and relaxation provides an insight into how it interacts with its local environment. From this, unique information is obtained about the static and dynamic properties of the material of interest. This has enabled muon spin spectroscopy, more commonly known as muon spin rotation/relaxation/resonance (μSR), to develop into a powerful tool to investigate material properties such as fundamental magnetism, superconductivity and functional materials. Alongside this, μSR may be used to study, for example, energy storage materials, ionic diffusion in potential batteries, the dynamics of soft matter, free radical chemistry, reaction kinetics, semiconductors, advanced manufacturing and cultural artefacts. This Primer is intended as an introductory article and introduces the μSR technique, the typical results obtained and some recent advances across various fields. Data reproducibility and limitations are also discussed, before highlighting promising future developments. Muon spin spectroscopy examines how muons interact with their local environment through measurement of the muon’s precession and relaxation. This provides unique information about the static and dynamic properties of a material. This Primer gives an introductory overview to muon spin spectroscopy, describing how muons are produced and used experimentally in various applications.
Many disciplines are facing a “reproducibility crisis”, which has precipitated much discussion about how to improve research integrity, reproducibility, and transparency. A unified effort across all sectors, levels, and stages of the research ecosystem is needed to coordinate goals and reforms that focus on open and transparent research practices. Promoting a more positive incentive culture for all ecosystem members is also paramount. In this commentary, we—the Local Network Leads of the UK Reproducibility Network—outline our response to the UK House of Commons Science and Technology Committee’s inquiry on research integrity and reproducibility. We argue that coordinated change is needed to create (1) a positive research culture, (2) a unified stance on improving research quality, (3) common foundations for open and transparent research practice, and (4) the routinisation of this practice. For each of these areas, we outline the roles that individuals, institutions, funders, publishers, and Government can play in shaping the research ecosystem. Working together, these constituent members must also partner with sectoral and coordinating organisations to produce effective and long-lasting reforms that are fit-for-purpose and future-proof. These efforts will strengthen research quality and create research capable of generating far-reaching applications with a sustained impact on society.
Members of the gut microbiota genus Bifidobacterium are widely distributed human and animal symbionts believed to exert beneficial effects on their hosts. However, in-depth genomic analyses of animal-associated species and strains are somewhat lacking, particularly in wild animal populations. Here, to examine patterns of host specificity and carbohydrate metabolism capacity, we sequenced whole genomes of Bifidobacterium isolated from wild-caught small mammals from two European countries (UK and Lithuania). Members of Bifidobacterium castoris , Bifidobacterium animalis and Bifodobacterium pseudolongum were detected in wild mice ( Apodemus sylvaticus , Apodemus agrarius and Apodemus flavicollis ), but not voles or shrews. B. castoris constituted the most commonly recovered Bifidobacterium (78% of all isolates), with the majority of strains only detected in a single population, although populations frequently harboured multiple co-circulating strains. Phylogenetic analysis revealed that the mouse-associated B. castoris clades were not specific to a particular location or host species, and their distribution across the host phylogeny was consistent with regular host shifts rather than host-microbe codiversification. Functional analysis, including in vitro growth assays, suggested that mouse-derived B. castoris strains encoded an extensive arsenal of carbohydrate-active enzymes, including putative novel glycosyl hydrolases such as chitosanases, along with genes encoding putative exopolysaccharides, some of which may have been acquired via horizontal gene transfer. Overall, these results provide a rare genome-level analysis of host specificity and genomic capacity among important gut symbionts of wild animals, and reveal that Bifidobacterium has a labile relationship with its host over evolutionary time scales.
Objective Nicotine replacement therapy (NRT) helps people stop smoking. Monitoring treatment adherence is important as poor adherence to NRT limits its effectiveness. As e-cigarettes contain nicotine, their use (‘vaping’) is likely to affect both NRT use and smoking. We wished to measure adherence to NRT, and to investigate relationships between NRT, vaping and smoking so we developed ‘NicUse’, a smartphone App linked to a cloud database for collecting data relevant to NRT adherence. We report user-acceptability and investigate data validity among pregnant people by comparing heaviness of smoking reported to NicUse surveys with contemporaneous exhaled carbon monoxide readings. Results Thirty five pregnant women participating in a pilot study were asked to install and use NicUse on their smartphones. 32/35 (91%) logged into NicUse, 31 (89%) completed one or more surveys, and 22 (63%) completed these on ≥ 20 of 28 study days. Twenty-four gave end-of-study user acceptability ratings; 23 (96%) agreed or strongly agreed NicUse was ‘Easy to use’ and ‘Instructions were clear’. There was a strong correlation between the number of daily cigarettes reported on NicUse and exhaled CO readings taken on study Day 7 (Pearson’s r = 0.95, p < 0.001). NicUse appears highly acceptable, and smoking data reported to it shows validity.
Background Imprinting disorders are a group of congenital diseases which are characterized by molecular alterations affecting differentially methylated regions (DMRs). To date, at least twelve imprinting disorders have been defined with overlapping but variable clinical features including growth and metabolic disturbances, cognitive dysfunction, abdominal wall defects and asymmetry. In general, a single specific DMR is affected in an individual with a given imprinting disorder, but there are a growing number of reports on individuals with so-called multilocus imprinting disturbances (MLID), where aberrant imprinting marks (most commonly loss of methylation) occur at multiple DMRs. However, as the literature is fragmented, we reviewed the molecular and clinical data of 55 previously reported or newly identified MLID families with putative pathogenic variants in maternal effect genes (NLRP2, NLRP5, NLRP7, KHDC3L, OOEP, PADI6) and in other candidate genes (ZFP57, ARID4A, ZAR1, UHRF1, ZNF445). Results In 55 families, a total of 68 different candidate pathogenic variants were identified (7 in NLRP2, 16 in NLRP5, 7 in NLRP7, 17 in PADI6, 15 in ZFP57, and a single variant in each of the genes ARID4A, ZAR1, OOEP, UHRF1, KHDC3L and ZNF445). Clinical diagnoses of affected offspring included Beckwith–Wiedemann syndrome spectrum, Silver–Russell syndrome spectrum, transient neonatal diabetes mellitus, or they were suspected for an imprinting disorder (undiagnosed). Some families had recurrent pregnancy loss. Conclusions Genomic maternal effect and foetal variants causing MLID allow insights into the mechanisms behind the imprinting cycle of life, and the spatial and temporal function of the different factors involved in oocyte maturation and early development. Further basic research together with identification of new MLID families will enable a better understanding of the link between the different reproductive issues such as recurrent miscarriages and preeclampsia in maternal effect variant carriers/families and aneuploidy and the MLID observed in the offsprings. The current knowledge can already be employed in reproductive and genetic counselling in specific situations.
Background Physical activity (PA) declines during childhood. Important sources of PA are active travel, organised sport and physical education (PE), but it is unclear how these domain-specific PA sources contribute to (changes in) daily moderate-to-vigorous PA (MVPA) in young people. This study aimed to examine (1) the cross-sectional association between domain-specific physical activity (i.e., active travel, organised sport and PE) and daily minutes in accelerometer-assessed MVPA; and (2) the longitudinal association between domain-specific physical activity at baseline and change in daily minutes in MVPA. Methods Participants (baseline age 11.3 ± .1.2 years) were drawn from three studies in the International Children’s Accelerometry Database. The contribution of self-reported standardised active travel, organised sport and PE to accelerometer-measured daily minutes in MVPA was examined using linear regression. In cross-sectional analyses, MVPA was regressed on each PA domain in separate models, adjusted for study, age, sex, maternal education, season, and monitor wear time. In longitudinal analyses, change in MVPA was regressed on each of the baseline PA domains, additionally adjusting for changes in season and wear time, follow-up duration, and baseline MVPA. R-squared was used to compare variance explained by each PA domain. Results In the cross-sectional analyses ( n = 3871), organised sport (standardised β = 3.81, 95% confidence interval [95%CI] = 3.06, 4.56) and active travel (β = 3.46, 95%CI = 2.73, 4.19) contributed more to daily MVPA than PE (β = 0.82, 95%CI = -0.02, 1.66). Compared to the base model which included only covariates (R ² = 21.5%), organised sport (absolute change: + 1.9%) and active travel (+ 1.7%) models explained more of the variance than the PE model (± < 0.1%). Associations followed a similar pattern in the longitudinal analyses ( n = 2302), but none of the PA domains predicted change in MVPA (organised sport: standardised β = 0.85, 95%CI = -0.03, 1.72; active travel: β = 0.68, 95%CI = -0.14, 1.50; PE: β = 0.02, 95%CI = -0.87, 0.91). Conclusions A multi-sectoral approach covering a wide range of PA domains should be promoted to minimise the age-related decline in MVPA during childhood.
Lobbying activity is subject to strict disclosure requirements in the USA. Failure to comply with these requirements can lead to criminal and civil penalties. It is claimed that these tight lobbying disclosure measures resulted in an increase in ‘underground lobbying’. This research proposes a method to discover non-compliance in lobbying disclosure and gauge the magnitude of underground lobbying. We start from the premise that lobbying changes the text of the bills it targets. If these changes happen to some extent systematically, then the texts of lobbied bills should be discernible from non-lobbied bills. We combine the corpus of US legislative bills with a large dataset of lobbying activity to give us a partially labelled dataset, where a positive label indicates a lobbied bill, and the lack of a label indicates either that the bill was lobbied, or was lobbied but not disclosed. To address this partial labelling problem, we first set up a naive classification task, where we assume all unlabelled bills to have a negative label and train a model on a large corpus of US bills. By finding the best performing model, we then design a bagging method and collect out of fold predictions, to predict for each unlabelled bill whether it was lobbied or not. From these predictions, we infer that there are a sizable number of bills that are likely to have been lobbied, but this lobbying activity was not disclosed. We then investigate how the political affiliation of the sponsoring senators and congressmen relates to these probabilities.
Background Pregnant women with type 1 diabetes strive for tight glucose targets (3.5-7.8 mmol/L) to minimise the risks of obstetric and neonatal complications. Despite using diabetes technologies including continuous glucose monitoring (CGM), insulin pumps and contemporary insulin analogues, most women struggle to achieve and maintain the recommended pregnancy glucose targets. This study aims to evaluate whether the use of automated closed-loop insulin delivery improves antenatal glucose levels in pregnant women with type 1 diabetes. Methods/design A multicentre, open label, randomized, controlled trial of pregnant women with type 1 diabetes and a HbA1c of ≥48 mmol/mol (6.5%) at pregnancy confirmation and ≤ 86 mmol/mol (10%) at randomization. Participants who provide written informed consent before 13 weeks 6 days gestation will be entered into a run-in phase to collect 96 h (24 h overnight) of CGM glucose values. Eligible participants will be randomized on a 1:1 basis to CGM (Dexcom G6) with usual insulin delivery (control) or closed-loop (intervention). The closed-loop system includes a model predictive control algorithm (CamAPS FX application), hosted on an android smartphone that communicates wirelessly with the insulin pump (Dana Diabecare RS) and CGM transmitter. Research visits and device training will be provided virtually or face-to-face in conjunction with 4-weekly antenatal clinic visits where possible. Randomization will stratify for clinic site. One hundred twenty-four participants will be recruited. This takes into account 10% attrition and 10% who experience miscarriage or pregnancy loss. Analyses will be performed according to intention to treat. The primary analysis will evaluate the change in the time spent in the target glucose range (3.5-7.8 mmol/l) between the intervention and control group from 16 weeks gestation until delivery. Secondary outcomes include overnight time in target, time above target (> 7.8 mmol/l), standard CGM metrics, HbA1c and psychosocial functioning and health economic measures. Safety outcomes include the number and severity of ketoacidosis, severe hypoglycaemia and adverse device events. Discussion This will be the largest randomized controlled trial to evaluate the impact of closed-loop insulin delivery during type 1 diabetes pregnancy. Trial registration ISRCTN 56898625 Registration Date: 10 April, 2018.
Background Right atrial (RA) area predicts mortality in patients with pulmonary hypertension, and is recommended by the European Society of Cardiology/European Respiratory Society pulmonary hypertension guidelines. The advent of deep learning may allow more reliable measurement of RA areas to improve clinical assessments. The aim of this study was to automate cardiovascular magnetic resonance (CMR) RA area measurements and evaluate the clinical utility by assessing repeatability, correlation with invasive haemodynamics and prognostic value. Methods A deep learning RA area CMR contouring model was trained in a multicentre cohort of 365 patients with pulmonary hypertension, left ventricular pathology and healthy subjects. Inter-study repeatability (intraclass correlation coefficient (ICC)) and agreement of contours (DICE similarity coefficient (DSC)) were assessed in a prospective cohort (n = 36). Clinical testing and mortality prediction was performed in n = 400 patients that were not used in the training nor prospective cohort, and the correlation of automatic and manual RA measurements with invasive haemodynamics assessed in n = 212/400. Radiologist quality control (QC) was performed in the ASPIRE registry, n = 3795 patients. The primary QC observer evaluated all the segmentations and recorded them as satisfactory, suboptimal or failure. A second QC observer analysed a random subcohort to assess QC agreement (n = 1018). Results All deep learning RA measurements showed higher interstudy repeatability (ICC 0.91 to 0.95) compared to manual RA measurements (1st observer ICC 0.82 to 0.88, 2nd observer ICC 0.88 to 0.91). DSC showed high agreement comparing automatic artificial intelligence and manual CMR readers. Maximal RA area mean and standard deviation (SD) DSC metric for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs observer 2 is 92.4 ± 3.5 cm ² , 91.2 ± 4.5 cm ² and 93.2 ± 3.2 cm ² , respectively. Minimal RA area mean and SD DSC metric for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs observer 2 was 89.8 ± 3.9 cm ² , 87.0 ± 5.8 cm ² and 91.8 ± 4.8 cm ² . Automatic RA area measurements all showed moderate correlation with invasive parameters (r = 0.45 to 0.66), manual (r = 0.36 to 0.57). Maximal RA area could accurately predict elevated mean RA pressure low and high-risk thresholds (area under the receiver operating characteristic curve artificial intelligence = 0.82/0.87 vs manual = 0.78/0.83), and predicted mortality similar to manual measurements, both p < 0.01. In the QC evaluation, artificial intelligence segmentations were suboptimal at 108/3795 and a low failure rate of 16/3795. In a subcohort (n = 1018), agreement by two QC observers was excellent, kappa 0.84. Conclusion Automatic artificial intelligence CMR derived RA size and function are accurate, have excellent repeatability, moderate associations with invasive haemodynamics and predict mortality.
When analyzing classroom video, pre-service teachers can improve their professional vision, that is, their ability to notice important events in a classroom and to interpret them based on theoretical knowledge. However, learning with video is especially challenging for novice learners. Thus, video needs to be embedded into an instructional context to be effective. In an experimental study with 89 pre-service biology teachers, we investigated the effect of a short professional vision training and whether two design principles from multimedia learning research—namely segmenting and self-explanation prompts—could additionally increase training effects. In a one-hour training session on small-group tutoring strategies, participants watched practice video examples either as a whole or segmented. After each video or video segment, respectively, they received either open or focused self-explanation prompts to analyze the scene. We assessed participants’ professional vision skills before and after training. Overall, participants’ performance substantially increased from pretest to posttest. Moreover, during training, both segmented video examples and focused self-explanation prompts led to increased noticing of relevant strategies. This advantage during training, however, did not result in higher professional vision improvement in posttest scores compared to participants who worked in the less supported training phase conditions. We discuss possible explanations why additional support increased training performance but not learning gains and suggest an additional fading phase as a means to achieve persistent effects.
Background Beckwith–Wiedemann syndrome (BWS) and Pseudohypoparathyroidism type 1B (PHP1B) are imprinting disorders (ID) caused by deregulation of the imprinted gene clusters located at 11p15.5 and 20q13.32, respectively. In both of these diseases a subset of the patients is affected by multi-locus imprinting disturbances (MLID). In several families, MLID is associated with damaging variants of maternal-effect genes encoding protein components of the subcortical maternal complex (SCMC). However, frequency, penetrance and recurrence risks of these variants are still undefined. In this study, we screened two cohorts of BWS patients and one cohort of PHP1B patients for the presence of MLID, and analysed the positive cases for the presence of maternal variants in the SCMC genes by whole exome-sequencing and in silico functional studies. Results We identified 10 new cases of MLID associated with the clinical features of either BWS or PHP1B, in which segregate 13 maternal putatively damaging missense variants of the SCMC genes. The affected genes also included KHDC3L that has not been associated with MLID to date. Moreover, we highlight the possible relevance of relatively common variants in the aetiology of MLID. Conclusion Our data further add to the list of the SCMC components and maternal variants that are involved in MLID, as well as of the associated clinical phenotypes. Also, we propose that in addition to rare variants, common variants may play a role in the aetiology of MLID and imprinting disorders by exerting an additive effect in combination with rarer putatively damaging variants. These findings provide useful information for the molecular diagnosis and recurrence risk evaluation of MLID-associated IDs in genetic counselling.
Miscalculating the volumes of water withdrawn for irrigation, the largest consumer of freshwater in the world, jeopardizes sustainable water management. Hydrological models quantify water withdrawals, but their estimates are unduly precise. Model imperfections need to be appreciated to avoid policy misjudgements.
Background Emergency department (ED) patients disproportionally smoke compared to the general population and frequently utilize the ED for routine, urgent, and emergent care. Thus, the ED is a target-rich environment for interventions aimed at increasing smoking cessation, especially among vulnerable populations. Promotion of smoking cessation in the ED has the potential to address health inequalities and reach patients that experience significant barriers to accessing preventive care and lifestyle modifications. Topics of review This narrative review presents a concise summary of the major smoking cessation strategies studied in the ED setting for adults, children, and pregnant ED patients. Additionally, this review presents the strategies to increase the uptake of smoking cessation in the ED, as well as an international perspective of smoking cessation efforts in the ED. Past and ongoing efforts to improve smoking cessation among ED patients are discussed, and critical knowledge gaps and research opportunities are highlighted. Conclusion Smoking cessation is both efficacious and feasible during an ED visit, with multiple options available to both adults, children, parents, and pregnant patients. Little standardization among cessation strategies among EDs has been demonstrated, despite the ED being uniquely positioned to address disparities in smoking cessation and contribute towards national smoking cessation goals. During most ED visits, any health care team member can address ongoing tobacco use, and smoking cessation can easily be related to the context of the patient’s presenting complaint. To be effective, health care systems and teams must recognize the ED as a suitable location to engage with patients regarding their knowledge and awareness of ongoing smoking use, and are well suited to provide and initiate effective smoking cessation treatments.
A consequence of our progressively ageing global population is the increasing prevalence of worldwide age-related cognitive decline and dementia. In the absence of effective therapeutic interventions, identifying risk factors associated with cognitive decline becomes increasingly vital. Novel perspectives suggest that a dynamic bidirectional communication system between the gut, its microbiome, and the central nervous system, commonly referred to as the microbiota-gut-brain axis, may be a contributing factor for cognitive health and disease. However, the exact mechanisms remain undefined. Microbial-derived metabolites produced in the gut can cross the intestinal epithelial barrier, enter systemic circulation and trigger physiological responses both directly and indirectly affecting the central nervous system and its functions. Dysregulation of this system (i.e., dysbiosis) can modulate cytotoxic metabolite production, promote neuroinflammation and negatively impact cognition. In this review, we explore critical connections between microbial-derived metabolites (secondary bile acids, trimethylamine-N-oxide (TMAO), tryptophan derivatives and others) and their influence upon cognitive function and neurodegenerative disorders, with a particular interest in their less-explored role as risk factors of cognitive decline.
Rapid industrialization and urbanization significantly contribute to air pollution in China. Essential constituents of air pollution are fine and coarse particulate matter which are the total mass of aerosol particles with aerodynamic diameters smaller than ≤2.5 μm (PM2.5) and ≤10 μm (PM10), respectively. These particles may cause severe health effects, and impact the atmospheric environment and climate. However, the limited number of ground-based measurements at sparsely distributed air quality monitoring stations hamper long-term air pollution impact studies over large areas. Although spatial data on PM2.5 and PM10 are available from reanalysis models, the accuracy of such data may be reduced in comparison with ground data and may vary regionally and seasonally. Therefore, a long-term evaluation of reanalysis-based PM2.5 and PM10 against ground-based measurements is needed for China. In this study, surface-level PM2.5 and PM10 concentrations from 2014 to 2020 obtained from the Copernicus Atmospheric Monitoring Service (CAMS), and from the second version of Modern-Era Retrospective analysis for Research and Applications (MERRA-2) were evaluated using ground-based measurements obtained from 1675 air quality monitoring stations distributed across China. High PM2.5 and PM10 (μg/m3) concentrations from ground-based measurements were observed in many parts of China (including the North China Plain: NCP, Yangtse River Delta:YRD, Pearl River Delta: PRD, Central China, Sichuan Basin: SB, and northwestern region: Tarim Basin). The patterns of the spatial distributions of PM2.5 and PM10 obtained from CAMS and MERRA-2 across China are similar to those of the ground-based monitoring data, but the concentrations from both models are substantially different. CAMS significantly overestimates PM2.5 and PM10 over most regions, in particular over urban and desert areas, whereas MERRA-2 seasonal and annual mean concentrations were more accurate over the highly polluted areas in central and eastern China. The lowest PM2.5 and PM10 concentrations were observed over the Tibetan Plateau and Qinghai, where CAMS and MERRA-2 datasets were substantially underestimated. Furthermore, both CAMS and MERRA-2 under-and over-estimate the PM concentrations in both low and high pollution conditions. Overall, this study contributes to understanding of the reliability of reanalysis data and provides a baseline document for improving the CAMS and MERRA-2 datasets for studying local and regional air quality in China.
The principal aim of environmental impact assessment (EIA) is to foster sustainable development. Sustainability can be conceived along a ‘weak’ and ‘strong’ continuum, in which the latter holds that substitution of natural capital is severely limited, and evidence suggests that weak sustainability prevails in decision-making supported by EIA. Therefore, based on the assumption that strong sustainability is the required goal to protect biodiversity and mitigate future climate change, the aim of this paper is to establish the concept of transformative effectiveness to better evaluate how EIA can foster the transformation of stakeholders’ frames of references towards strong sustainability. The EIA systems of the US, EU, and Brazil were analyzed to identify the implicit and explicit drivers towards transformative change to a strong sustainability goal. A literature review of transformative change within impact assessment was used for identifying the necessary changes that need to come from both within policy actor networks and from the wider social-ecological-technological system in which EIA operates. From this, a new dimension of transactive effectiveness is characterized that can help to evaluate the extent to which EIA practice is transforming towards strong sustainability as a goal.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
12,983 members
Satyaban B Ratna
  • Climatic Research Unit
Rudy Jacques Lapeer
  • School of Computing Sciences
Marcus Redley
  • School of Health Sciences
Elena Borzova
  • Biomedical Research Centre
Information
Address
Earlham Road, NR4 7TJ, Norwich, Norfolk, United Kingdom
Head of institution
Professor David Richardson
Website
http://www.uea.ac.uk/