126
1,344.65
10.67
203

Recent PublicationsView all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lineage specification in the preimplantation mouse embryo is a regulative process. Thus, it has been difficult to ascertain whether segregation of the inner-cell-mass (ICM) into precursors of the pluripotent epiblast (EPI) and the differentiating primitive endoderm (PE) is random or influenced by developmental history. Here, our results lead to a unifying model for cell fate specification in which the time of internalization and the relative contribution of ICM cells generated by two waves of asymmetric divisions influence cell fate. We show that cells generated in the second wave express higher levels of Fgfr2 than those generated in the first, leading to ICM cells with varying Fgfr2 expression. To test whether such heterogeneity is enough to bias cell fate, we upregulate Fgfr2 and show it directs cells towards PE. Our results suggest that the strength of this bias is influenced by the number of cells generated in the first wave and, mostly likely, by the level of Fgf signalling in the ICM. Differences in the developmental potential of eight-cell- and 16-cell-stage outside blastomeres placed in the inside of chimaeric embryos further support this conclusion. These results unite previous findings demonstrating the importance of developmental history and Fgf signalling in determining cell fate.
    Full-text · Article · Nov 2013 · Open Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA interference defends against viral infection in plant and animal cells. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model of host-virus interaction. Using a genome-wide association study in C. elegans wild populations and quantitative trait locus mapping, we identify a 159 base-pair deletion in the conserved drh-1 gene (encoding a RIG-I-like helicase) as a major determinant of viral sensitivity. We show that DRH-1 is required for the initiation of an antiviral RNAi pathway and the generation of virus-derived siRNAs (viRNAs). In mammals, RIG-I-domain containing proteins trigger an interferon-based innate immunity pathway in response to RNA virus infection. Our work in C. elegans demonstrates that the RIG-I domain has an ancient role in viral recognition. We propose that RIG-I acts as modular viral recognition factor that couples viral recognition to different effector pathways including RNAi and interferon responses. DOI:http://dx.doi.org/10.7554/eLife.00994.001.
    Full-text · Article · Oct 2013 · eLife Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mouse postimplantation epiblast cultured in activin and basic fibroblast growth factor gives rise to continuously growing epiblast stem cells (EpiSCs) that share key properties with postimplantation epiblast, such as DNA methylation and an inactive X-chromosome. EpiSCs also show a distinct gene expression profile compared to embryonic stem cells (ESCs) derived from preimplantation blastocysts, and do not contribute efficiently to chimeras. EpiSCs can, however, revert to pluripotent ESC-like cells upon exposure to leukemia inhibitory factor-Stat3 signalling on feeder cells. Here we describe a protocol for the establishment of EpiSCs and their reversion to ESCs.
    No preview · Article · Aug 2013 · Methods in molecular biology (Clifton, N.J.)
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.