Recent PublicationsView all

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are often regarded as the cellular powerhouses through their ability to generate ATP, the universal fuel for metabolic processes. However, in recent years mitochondria have been recognised as critical regulators of cell death, inflammation, metabolism, and the generation of reactive oxygen species (ROS). Thus, mitochondrial dysfunction directly promotes cell death, inflammation, and oxidative stress and alters metabolism. These are key processes in atherosclerosis and there is now evidence that mitochondrial DNA (mtDNA) damage leads to mitochondrial dysfunction and promotes atherosclerosis directly. In this review we discuss the recent evidence for and mechanisms linking mtDNA defects and atherosclerosis and suggest areas of mitochondrial biology that are potential therapeutic targets.
    No preview · Article · Sep 2014 · Trends in Endocrinology and Metabolism
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abdominal aortic aneurysm is an inflammatory disease leading to destructive vascular remodeling and ultimately to lethal aortic rupture. Despite its frequent association with atherosclerosis, compelling studies have shown striking differences and potentially opposite roles of T-cell helper responses in aneurysm as compared with atherosclerosis, casting doubt on the relevance and suitability of T-cell-targeted therapies in this context. Here, we show that selective depletion of T regulatory (Treg) cells using a CD25-specific monoclonal antibody significantly enhances the susceptibility of C57Bl/6 mice to angiotensin II-induced abdominal aortic aneurysm and promotes aortic rupture (n=25-44 mice/group). Similar results are observed in angiotensin II-treated Cd80(-/-)/Cd86(-/-) or Cd28(-/-) mice with impaired Treg cell homeostasis (n=18-23 mice/group). Treg cell depletion is associated with increased immune cell activation and a blunted interleukin (IL)-10 anti-inflammatory response, suggesting an immunoinflammatory imbalance. Interestingly, Il-10(-/-) mice (n=20 mice/group) show increased susceptibility to angiotensin II-induced abdominal aortic aneurysm and aortic rupture and are insensitive to Treg cell depletion. Finally, reconstitution of Cd28(-/-) Treg-deficient mice with Treg cells (n=22 mice/group) restores a balance in the immunoinflammatory response, rescues the animals from increased susceptibility to aneurysm, and prevents aortic dissection. These results identify a critical role for Treg cells and IL-10 in the control of aneurysm formation and its progression to rupture and suggest that therapies targeting Treg responses may be most suited to treat aneurysmal disease.
    No preview · Article · Aug 2013 · Arteriosclerosis Thrombosis and Vascular Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial DNA (mtDNA) damage occurs in both circulating cells and the vessel wall in human atherosclerosis. However it is unclear whether mtDNA damage directly promotes atherogenesis or is a consequence of tissue damage, which cell types are involved, and whether its effects are only mediated through reactive oxygen species (ROS). MtDNA damage occurred early in the vessel wall in Apolipoprotein E null (ApoE(-/-)) mice, before significant atherosclerosis developed. MtDNA defects were also identified in circulating monocytes and liver, and associated with mitochondrial dysfunction. To determine whether mtDNA damage directly promotes atherosclerosis, we studied ApoE(-/-) mice deficient for mitochondrial polymerase-γ proofreading activity (polG(-/-)/ApoE(-/-)). polG(-/-)/ApoE(-/-) mice showed extensive mtDNA damage and defects in oxidative phosphorylation, but no increase in ROS. polG(-/-)/ApoE(-/-) mice showed increased atherosclerosis, associated with impaired proliferation and apoptosis of vascular smooth muscle cells, and hyperlipidemia. Transplantation with polG(-/-)/ApoE(-/-) bone marrow increased features of plaque vulnerability, and polG(-/-)/ApoE(-/-) monocytes showed increased apoptosis and inflammatory cytokine release. To examine mtDNA damage in human atherosclerosis, we assessed mtDNA adducts in plaques, and in leukocytes from patients who had undergone virtual histology intravascular ultrasound characterization of coronary plaques. Human atherosclerotic plaques showed increased mtDNA damage compared with normal vessels; in contrast, leukocyte mtDNA damage was associated with higher-risk plaques but not plaque burden. We show that mtDNA damage in vessel wall and circulating cells is widespread, causative and indicates higher risk in atherosclerosis. Protection against mtDNA damage and improvement of mitochondrial function are potential areas for new therapeutics.
    Full-text · Article · Jul 2013 · Circulation
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.