2,724.55
2.59
1,410

Recent PublicationsView all

  • [Show abstract] [Hide abstract]
    ABSTRACT: The emptying of pipework from fluids of high viscosity is a significant multiphase flow problem in many food and personal care industries. Maximising product recovery whilst minimising cleaning time and effluent volume is important in minimising the environmental footprint of the plant. The cleaning of pipework fully filled by toothpaste by water under different process conditions has been studied and monitored by weighing pipes at intervals. Three flow regimes have been identified; a short core removal stage of product recovery, before water breaks through the filled pipe, and two in subsequent cleaning, film removal when there is a continuous wavy annular film on the wall, and patch removal in which the material is present as patches on the wall. The amount of product recovered in core removal is here not a function of flow conditions; however, conditions during core removal significantly affect the overall cleaning time. Overall cleaning time can be reduced by at least 25% by selecting the best removal conditions in the different stages. It is hypothesised that this is due to changes in the wall layer induced during core removal, with a very wavy wall layer leading to rapid subsequent removal. If this effect could be understood and scaled up it may be possible to improve commercial cleaning processes.
    No preview · Article · Nov 2014 · Chemical Engineering Research and Design
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lubrication behaviour of foodstuff is related to mouthfeel perception and consumer appreciation. Soft tribology of food related products has mainly been investigated with semi-solid food, polymer solutions and water continuous emulsions, and this is the first study aimed at investigating soft tribolocigal behaviour of oil continuous emulsions. All the emulsions considered here exhibit the same trends in terms of lubrication behaviour, where little boundary lubrication is observed at the entrainment speed considered. The volume of dispersed aqueous phase affects overall tribology of oil continuous emulsions via an increase in their dynamic viscosity. Increasing the phase volume leads to an increase in friction in the elastohydrodynamic regime whereas the lubrication in the boundary regime is improved. Elastohydrodynamic lubrication is independent of the aqueous phase composition and the type of emulsifier present at the water–oil interface. These parameters affect boundary lubrication of emulsion systems exhibiting droplet size bigger than the elastohydrodynamic oil film thickness. This is expected to have a significant impact on the design of low fat emulsions that match the lubrication properties of their full fat version.
    No preview · Article · Oct 2014 · Journal of Food Engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A nickel-silica core@shell catalyst was applied for a methane tri-reforming process in a fixed-bed reactor. To determine the optimal condition of the tri-reforming process for production of syngas appropriate for methanol synthesis the effect of reaction temperature (550–750 °C), CH4:H2O molar ratio (1:0–3.0) and CH4:O2 molar ratio (1:0–0.5) in the feedstock was investigated. CH4 conversion rate and H2/CO ratio in the produced syngas were influenced by the feedstock composition. Increasing the amount of steam above the proportion of CH4:H2O 1:0.5 reduced the H2:CO molar ratio in produced syngas to ∼1.5. Increasing oxygen partial pressure improved methane conversion to 90% at 750 °C. At low ∼550 °C reaction temperature the tri-reforming process was not effective with low hydrogen production (H2 yield ∼20%) and very low <5% CO2 conversion. Increasing reaction temperature increased hydrogen yield to ∼85% at 750 °C. From all the tested reaction conditions the optimal for tri-reforming over the 11%Ni@SiO2 catalyst was: feed composition with molar ratio CH4:CO2:H2O:O2:He 1:0.5:0.5:0.1:0.4 at T = 750 °C. The results were explained in the context of characterisation of the catalysts used. The obtained results showed that the tri-reforming process can be applied for production of syngas with composition suitable for methanol synthesis.
    Preview · Article · Aug 2014 · International Journal of Hydrogen Energy
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.