662
1,460.38
2.21
920

Recent PublicationsView all

  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiexponential decay parameters are estimated from diffusion-weighted-imaging that generally have inherently low signal-to-noise ratio and non-normal noise distributions, especially at high b-values. Conventional nonlinear regression algorithms assume normally distributed noise, introducing bias into the calculated decay parameters and potentially affecting their ability to classify tumors. This study aims to accurately estimate noise of averaged diffusion-weighted-imaging, to correct the noise induced bias, and to assess the effect upon cancer classification. A new adaptation of the median-absolute-deviation technique in the wavelet-domain, using a closed form approximation of convolved probability-distribution-functions, is proposed to estimate noise. Nonlinear regression algorithms that account for the underlying noise (maximum probability) fit the biexponential/stretched exponential decay models to the diffusion-weighted signal. A logistic-regression model was built from the decay parameters to discriminate benign from metastatic neck lymph nodes in 40 patients. The adapted median-absolute-deviation method accurately predicted the noise of simulated (R(2) = 0.96) and neck diffusion-weighted-imaging (averaged once or four times). Maximum probability recovers the true apparent-diffusion-coefficient of the simulated data better than nonlinear regression (up to 40%), whereas no apparent differences were found for the other decay parameters. Perfusion-related parameters were best at cancer classification. Noise-corrected decay parameters did not significantly improve classification for the clinical data set though simulations show benefit for lower signal-to-noise ratio acquisitions. Magn Reson Med, 2013. © 2013 Wiley Periodicals, Inc.
    No preview · Article · Jun 2014 · Magnetic Resonance in Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetically expressed fluorescent proteins have been shown to provide photoacoustic contrast. However, they can be limited by low photoacoustic generation efficiency and low optical absorption at red and near infrared wavelengths, thus limiting their usefulness in mammalian small animal models. In addition, many fluorescent proteins exhibit low photostability due to photobleaching and transient absorption effects. In this study, we explore these issues by synthesizing and characterizing a range of commonly used fluorescent proteins (dsRed, mCherry, mNeptune, mRaspberry, AQ143, E2 Crimson) and novel non-fluorescent chromoproteins (aeCP597 and cjBlue and a non-fluorescent mutant of E2 Crimson). The photoacoustic spectra, photoacoustic generation efficiency and photostability of each fluorescent protein and chromoprotein were measured. Compared to the fluorescent proteins, the chromoproteins were found to exhibit higher photoacoustic generation efficiency due to the absence of radiative relaxation and ground state depopulation, and significantly higher photostability. The feasibility of converting an existing fluorescent protein into a non-fluorescent chromoprotein via mutagenesis was also demonstrated. The chromoprotein mutant exhibited greater photoacoustic signal generation efficiency and better agreement between the photoacoustic and the specific extinction coefficient spectra than the original fluorescent protein. Lastly, the genetic expression of a chromoprotein in mammalian cells was demonstrated. This study suggests that chromoproteins may have potential for providing genetically encoded photoacoustic contrast.
    Full-text · Article · Nov 2013 · Biomedical Optics Express
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidural catheters are used to deliver anesthetics and opioids for managing pain in many clinical scenarios. Currently, epidural catheter insertion is performed without information about the tissues that are directly ahead of the catheter. As a result, the catheter can be incorrectly positioned within a blood vessel, which can cause toxicity. Recent studies have shown that optical reflectance spectroscopy could be beneficial for guiding needles that are used to insert catheters. In this study, we investigate the whether this technique could benefit the placement of catheters within the epidural space. We present a novel optical epidural catheter with integrated polymer light guides that allows for optical spectra to be acquired from tissues at the distal tip. To obtain an initial indication of the information that could be obtained, reflectance values and photon penetration depth were estimated using Monte Carlo simulations, and optical reflectance spectra were acquired during a laminectomy of a swine ex vivo. Large differences between the spectra acquired from epidural adipose tissue and from venous blood were observed. The optical catheter has the potential to provide real-time detection of intravascular catheter placement that could reduce the risk of complications.
    Full-text · Article · Nov 2013 · Biomedical Optics Express
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.