445
2,815.08
6.33
743

Recent PublicationsView all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leeuwenhoek's 1677 paper, the famous ‘letter on the protozoa’, gives the first detailed description of protists and bacteria living in a range of environments. The colloquial, diaristic style conceals the workings of a startlingly original experimental mind. Later scientists could not match the resolution and clarity of Leeuwenhoek's microscopes, so his discoveries were doubted or even dismissed over the following centuries, limiting their direct influence on the history of biology; but work in the twentieth century confirmed Leeuwenhoek's discovery of bacterial cells, with a resolution of less than 1 µm. Leeuwenhoek delighted most in the forms, interactions and behaviour of his little ‘animalcules', which inhabited a previously unimagined microcosmos. In these reflections on the scientific reach of Leeuwenhoek's ideas and observations, I equate his questions with the preoccupations of our genomic era: what is the nature of Leeuwenhoek's animalcules, where do they come from, how do they relate to each other? Even with the powerful tools of modern biology, the answers are far from resolved—these questions still challenge our understanding of microbial evolution. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
    Full-text · Article · Apr 2015 · Philosophical Transactions of The Royal Society B Biological Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low temperature inhibits plant growth despite the fact that considerable rates of photosynthetic activity can be maintained. Instead of lower rates of photosynthesis, active inhibition of cell division and expansion is primarily responsible for reduced growth. This results in sink limitation and enables plants to accumulate carbohydrates that act as compatible solutes or are stored throughout the winter to enable re-growth in spring. Regulation of growth in response to temperature therefore requires coordination with carbon metabolism, e.g., via the signaling metabolite trehalose-6-phosphate. The phytohormones gibberellin (GA) and jasmonate (JA) play an important role in regulating growth in response to temperature. Growth restriction at low temperature is mainly mediated by DELLA proteins, whose degradation is promoted by GA. For annual plants, it has been shown that the GA/DELLA pathway interacts with JA signaling and C-repeat binding factor dependent cold acclimation, but these interactions have not been explored in detail for perennials. Growth regulation in response to seasonal factors is, however, particularly important in perennials, especially at high latitudes. In autumn, growth cessation in trees is caused by shortening of the daylength in interaction with phytohormone signaling. In perennial grasses seasonal differences in the sensitivity to GA may enable enhanced growth in spring. This review provides an overview of the signaling interactions that determine plant growth at low temperature and highlights gaps in our knowledge, especially concerning the seasonality of signaling responses in perennial plants.
    Full-text · Article · Jan 2014 · Frontiers in Plant Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A classic paradox in sexual selection is how sexual traits under strong directional selection maintain underlying genetic variation. A new study has found that in Soay sheep a trade-off between reproductive success and survival maintains variation in horn size.
    Full-text · Article · Dec 2013 · Current biology: CB
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.