2,176.14
1.06
2,070

Recent PublicationsView all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrate that the surface second-harmonic generation can lead to the formation of nonlinear plasmonic whispering-gallery modes (WGMs) in microcavities made of metallic nanowires. Since these WGMs are excited by induced surface nonlinear dipoles, they can be generated even when they are not coupled to the radiation continuum. Consequently, the quality factor of these nonlinear modes can be as large as the theoretical limit imposed by the optical losses in the metal. Remarkably, our theoretical analysis shows that nonlinear plasmonic WGMs are characterized by fractional azimuthal modal numbers. This suggests that the plasmonic cavities investigated here can be used to generate multi-color optical fields with fractional angular momentum. Applications to plasmonic sensors are also discussed.
    Full-text · Article · Oct 2013 · Physical Review Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resistive switching offers a promising route to universal electronic memory, potentially replacing current technologies that are approaching their fundamental limits. In many cases switching originates from the reversible formation and dissolution of nanometre-scale conductive filaments, which constrain the motion of electrons, leading to the quantisation of device conductance into multiples of the fundamental unit of conductance, G0. Such quantum effects appear when the constriction diameter approaches the Fermi wavelength of the electron in the medium - typically several nanometres. Here we find that the conductance of silicon-rich silica (SiOx) resistive switches is quantised in half-integer multiples of G0. In contrast to other resistive switching systems this quantisation is intrinsic to SiOx, and is not due to drift of metallic ions. Half-integer quantisation is explained in terms of the filament structure and formation mechanism, which allows us to distinguish between systems that exhibit integer and half-integer quantisation.
    Full-text · Article · Sep 2013 · Scientific Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Detonation nanodiamond monolayer coatings are exceptionally biocompatible substrates for in vitro cell culture. However, the ability of nanodiamond coatings of different origin, size, surface chemistry and morphology to promote neuronal adhesion, and the ability to pattern neurons with nanodiamonds have yet to be investigated. Approach: Various nanodiamond coatings of different type are investigated for their ability to promote neuronal adhesion with respect to surface coating parameters and neurite extension. Nanodiamond tracks are patterned using photolithography and reactive ion etching. Main results: Universal promotion of neuronal adhesion is observed on all coatings tested and analysis shows surface roughness to not be a sufficient metric to describe biocompatibility, but instead nanoparticle size and curvature shows a significant correlation with neurite extension. Furthermore, neuronal patterning is achieved with high contrast using patterned nanodiamond coatings down to at least 10 µm. Significance: The results of nanoparticle size and curvature being influential upon neuronal adhesion has great implications towards biomaterial design, and the ability to pattern neurons using nanodiamond tracks shows great promise for applications both in vitro and in vivo.
    Full-text · Article · Sep 2013 · Journal of Neural Engineering
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.