University of Saskatchewan
  • Saskatoon, Saskatchewan, Canada
Recent publications
Soybean is the most abundant source of plant-derived protein and vegetable oil. Soy cultivation, is environmentally friendly than animal-based protein and the majority of common plant proteins, is associated with environmental damage than any other crop on the planet. This involves clearing forests for soy cultivation, soil erosion, greenhouse gases, water pollution and loss of biodiversity due to scale of production. Soy is a rich source of high-quality proteins, widely used as an important ingredient in preparation of meat products or plant-based meat analogs. Thus, the need to explore soy production sustainable becomes impeccable by improving agricultural practices, yield, proper certification, traceability and labeling of soy and its products, increase consumers awareness for acceptability and provide various financial and technological incentives.
The electroreduction reaction of CO 2 (ECO 2 RR) requires high-performance catalysts to convert CO 2 into useful chemicals. Transition metal-based atomically dispersed catalysts are promising for the high selectivity and activity in ECO 2 RR. This work presents a series of atomically dispersed Co, Fe bimetallic catalysts by carbonizing the Fe-introduced Co-zeolitic-imidazolate-framework (C–Fe–Co–ZIF) for the syngas generation from ECO 2 RR. The synergistic effect of the bimetallic catalyst promotes CO production. Compared to the pure C–Co–ZIF, C–Fe–Co–ZIF facilitates CO production with a CO Faradaic efficiency (FE) boost of 10%, with optimal FE CO of 51.9%, FE H2 of 42.4% at − 0.55 V, and CO current density of 8.0 mA cm ⁻² at − 0.7 V versus reversible hydrogen electrode (RHE). The H 2 /CO ratio is tunable from 0.8 to 4.2 in a wide potential window of − 0.35 to − 0.8 V versus RHE. The total FE CO+H2 maintains as high as 93% over 10 h. The proper adding amount of Fe could increase the number of active sites and create mild distortions for the nanoscopic environments of Co and Fe, which is essential for the enhancement of the CO production in ECO 2 RR. The positive impacts of Cu–Co and Ni–Co bimetallic catalysts demonstrate the versatility and potential application of the bimetallic strategy for ECO 2 RR.
Background While intra-arrest echocardiography can be used to guide and monitor chest compression quality, it is not currently feasible on the scene of out-of-hospital cardiac arrests. Rapid and automated sonographic localization of the heart may provide first-responders guidance to an optimal area of compression without requiring them to interpret ultrasound images. In this proof-of-concept porcine study, we sought to describe the performance of an automated ultrasound device in correctly identifying and tracing the borders of the heart in three distinct states: pre-arrest, arrest, and late arrest. Methods An automated ultrasound device (bladder scanner) was placed on the chests of 7 swine, along the left sternal border (4th–8th intercostal spaces). Scanner-generated images were recorded for each space during pre-arrest, arrest, and finally late arrest. 828 images of the LV and LV outflow tract were randomized and 150 (50/state) selected for analysis. Scanner tracings of the heart were then digitally obscured to facilitate tracing by expert reviewers who were blinded to the physiologic state. Reviewer tracings were compared to bladder scanner tracings; with concordance between these images determined via Sørensen–Dice index (SDI). Results When compared to human reviewers, the bladder scanner was able to identify and trace the borders during cardiac arrest. The bladder scanner performed best at the time of arrest (SDI 0.900 ± 0.059). As resuscitation efforts continued and time from initial arrest increased, the scanner’s performance decreased dramatically (SDI 0.597 ± 0.241 in late arrest). Conclusion An automated ultrasound device (bladder scanner) reliably traced porcine hearts during cardiac arrest. It is possible a device could be developed to indicate where compressions should be performed without requiring the operator to interpret ultrasound images. Further investigation into rapid, automated, sonographic localization of the heart to identify the area of compression in out-of-hospital cardiac arrest is warranted.
Background Most epidemiologic reports focus on lower extremity amputation (LEA) caused specifically by diabetes mellitus. However, narrowing scope disregards the impact of other causes and types of limb amputation (LA) diminishing the true incidence and societal burden. We explored the rates of LEA and upper extremity amputation (UEA) by level of amputation, sex and age over 14 years in Saskatchewan, Canada. Methods We calculated the differential impact of amputation type (LEA or UEA) and level (major or minor) of LA using retrospective linked hospital discharge data and demographic characteristics of all LA performed in Saskatchewan and resident population between 2006 and 2019. Rates were calculated from total yearly cases per yearly Saskatchewan resident population. Joinpoint regression was employed to quantify annual percentage change (APC) and average annual percent change (AAPC). Negative binomial regression was performed to determine if LA rates differed over time based on sex and age. Results Incidence of LEA (31.86 ± 2.85 per 100,000) predominated over UEA (5.84 ± 0.49 per 100,000) over the 14-year study period. The overall LEA rate did not change over the study period (AAPC -0.5 [95% CI − 3.8 to 3.0]) but fluctuations were identified. From 2008 to 2017 LEA rates increased (APC 3.15 [95% CI 1.1 to 5.2]) countered by two statistically insignificant periods of decline (2006–2008 and 2017–2019). From 2006 to 2019 the rate of minor LEA steadily increased (AAPC 3.9 [95% CI 2.4 to 5.4]) while major LEA decreased (AAPC -0.6 [95% CI − 2.1 to 5.4]). Fluctuations in the overall LEA rate nearly corresponded with fluctuations in major LEA with one period of rising rates from 2010 to 2017 (APC 4.2 [95% CI 0.9 to 7.6]) countered by two periods of decline 2006–2010 (APC -11.14 [95% CI − 16.4 to − 5.6]) and 2017–2019 (APC -19.49 [95% CI − 33.5 to − 2.5]). Overall UEA and minor UEA rates remained stable from 2006 to 2019 with too few major UEA performed for in-depth analysis. Males were twice as likely to undergo LA than females (RR = 2.2 [95% CI 1.99–2.51]) with no change in rate over the study period. Persons aged 50–74 years and 75+ years were respectively 5.9 (RR = 5.92 [95% Cl 5.39–6.51]) and 10.6 (RR = 10.58 [95% Cl 9.26–12.08]) times more likely to undergo LA than those aged 0–49 years. LA rate increased with increasing age over the study period. Conclusion The rise in the rate of minor LEA with simultaneous decline in the rate of major LEA concomitant with the rise in age of patients experiencing LA may reflect a paradigm shift in the management of diseases that lead to LEA. Further, this shift may alter demand for orthotic versus prosthetic intervention. A more granular look into the data is warranted to determine if performing minor LA diminishes the need for major LA.
Background As a triazole fungicide, triadimefon is widely used around the world. The ubiquitous occurrence of triadimefon in aquatic environments and potential adverse effects on aquatic organisms have resulted in global concerns. In this review, the current state of knowledge on occurrence, environmental behavior, and toxic effects are presented and used to conduct an assessment of risks posed by current concentrations of triadimefon in aquatic environments. Results The key findings from this review are that: (1) triadimefon occurred widely in surface waters, with high rates of detection; (2) abiotic degradation of triadimefon was affected by many factors. Stereoselectivity was found during biotic degradation and metabolism of triadimefon. Different enantiomers can cause various adverse effects, which complicates the assessment and requires enantiomers-specific considerations; (3) triadimefon exposure can affect organisms by causing multiple toxic effects on the thyroid, reproductive system, liver, nervous system as well as carcinogenicity and teratogenicity, and it can also act synergistically with other pesticides. Long-term, low-dose effects were considered to be the main characteristics of toxic effects of triadimefon; (4) results of the risk assessment based on probabilistic relationships represented by joint probability curves (JPCs) indicated that risk of triadimefon was classified as low risk. Conclusion Triadimefon occurred widely in surface waters, with high rates of detection, while the concentration data of triadimefon in surface water is insufficient. Researches about toxic effects and mechanisms of triadimefon on invertebrate are needed. Meanwhile, researches about toxic effects and environmental exposure of chiral monomers are also required. Due to its reproductive toxicity, triadimefon might result in adverse effects on the population level or even on the ecosystem level. Risk assessments for pesticides that cause long-term and low-dose effects on aquatic organisms such as triadimefon need to consider higher-level ecological risk.
Background Autoregulation has emerged as a potentially beneficial resistance training paradigm to individualize and optimize programming; however, compared to standardized prescription, the effects of autoregulated load and volume prescription on muscular strength and hypertrophy adaptations are unclear. Our objective was to compare the effect of autoregulated load prescription (repetitions in reserve-based rating of perceived exertion and velocity-based training) to standardized load prescription (percentage-based training) on chronic one-repetition maximum (1RM) strength and cross-sectional area (CSA) hypertrophy adaptations in resistance-trained individuals. We also aimed to investigate the effect of volume autoregulation with velocity loss thresholds ≤ 25% compared to > 25% on 1RM strength and CSA hypertrophy. Methods This review was performed in accordance with the PRISMA guidelines. A systematic search of MEDLINE, Embase, Scopus, and SPORTDiscus was conducted. Mean differences (MD), 95% confidence intervals (CI), and standardized mean differences (SMD) were calculated. Sub-analyses were performed as applicable. Results Fifteen studies were included in the meta-analysis: six studies on load autoregulation and nine studies on volume autoregulation. No significant differences between autoregulated and standardized load prescription were demonstrated for 1RM strength (MD = 2.07, 95% CI – 0.32 to 4.46 kg, p = 0.09, SMD = 0.21). Velocity loss thresholds ≤ 25% demonstrated significantly greater 1RM strength (MD = 2.32, 95% CI 0.33 to 4.31 kg, p = 0.02, SMD = 0.23) and significantly lower CSA hypertrophy (MD = 0.61, 95% CI 0.05 to 1.16 cm ² , p = 0.03, SMD = 0.28) than velocity loss thresholds > 25%. No significant differences between velocity loss thresholds > 25% and 20–25% were demonstrated for hypertrophy (MD = 0.36, 95% CI – 0.29 to 1.00 cm ² , p = 0.28, SMD = 0.13); however, velocity loss thresholds > 25% demonstrated significantly greater hypertrophy compared to thresholds ≤ 20% (MD = 0.64, 95% CI 0.07 to 1.20 cm ² , p = 0.03, SMD = 0.34). Conclusions Collectively, autoregulated and standardized load prescription produced similar improvements in strength. When sets and relative intensity were equated, velocity loss thresholds ≤ 25% were superior for promoting strength possibly by minimizing acute neuromuscular fatigue while maximizing chronic neuromuscular adaptations, whereas velocity loss thresholds > 20–25% were superior for promoting hypertrophy by accumulating greater relative volume. Protocol Registration The original protocol was prospectively registered (CRD42021240506) with the PROSPERO (International Prospective Register of Systematic Reviews).
Background Disease resilience is the ability to maintain performance across environments with different disease challenge loads (CL). A reaction norm describes the phenotypes that a genotype can produce across a range of environments and can be implemented using random regression models. The objectives of this study were to: (1) develop measures of CL using growth rate and clinical disease data recorded under a natural polymicrobial disease challenge model; and (2) quantify genetic variation in disease resilience using reaction norm models. Methods Different CL were derived from contemporary group effect estimates for average daily gain (ADG) and clinical disease phenotypes, including medical treatment rate (TRT), mortality rate, and subjective health scores. Resulting CL were then used as environmental covariates in reaction norm analyses of ADG and TRT in the challenge nursery and finisher, and compared using model loglikelihoods and estimates of genetic variance associated with CL. Linear and cubic spline reaction norm models were compared based on goodness-of-fit and with multi-variate analyses, for which phenotypes were separated into three traits based on low, medium, or high CL. Results Based on model likelihoods and estimates of genetic variance explained by the reaction norm, the best CL for ADG in the nursery was based on early ADG in the finisher, while the CL derived from clinical disease traits across the nursery and finisher was best for ADG in the finisher and for TRT in the nursery and across the nursery and finisher. With increasing CL, estimates of heritability for nursery and finisher ADG initially decreased, then increased, while estimates for TRT generally increased with CL. Genetic correlations for ADG and TRT were low between high versus low CL, but high for close CL. Linear reaction norm models fitted the data significantly better than the standard genetic model without genetic slopes, while the cubic spline model fitted the data significantly better than the linear reaction norm model for most traits. Reaction norm models also fitted the data better than multi-variate models. Conclusions Reaction norm models identified genotype-by-environment interactions related to disease CL. Results can be used to select more resilient animals across different levels of CL, high-performance animals at a given CL, or a combination of these.
Objective The brown seed coat colour of flax ( Linum ustiatissimum ) results from proanthocyanidin synthesis and accumulation. Glutathione S-transferases (GSTs), such as the TT19 protein in Arabidopsis , have been implicated in the transport of anthocyanidins during the synthesis of the brown proanthocyanidins. This study fine mapped the g allele responsible for yellow seed colour in S95407 and identified it as a putative mutated GST. Results We developed a Recombinant Inbred Line population with 320 lines descended from a cross between CDC Bethune (brown seed coat) and S95407 (yellow seed) and used molecular markers to fine map the G gene on Chromosome 6 (Chr 6). We used Next Generation Sequencing (NGS) to identify a putative GST was identified in this region and Sanger sequenced the gene from CDC Bethune, S95407 and other yellow seeded genotypes. The putative GST from S95407 had 13 SNPs encoding, including four non-synonymous amino acid changes, compared to the CDC Bethune reference sequence and the other genotypes. The GST encoded by Lus10019895 is a lambda-GST in contrast to the Arabidopsis TT19 which is a phi-GST.
Porcine reproductive and respiratory syndrome virus (PRRSV) infection during late gestation negatively affects fetal development. The objective of this study was to identify the fetal organs most severely impacted following infection, and evaluate the relationship between this response and fetal phenotypes. RNA was extracted from fetal heart, liver, lung, thymus, kidney, spleen, and loin muscle, collected following late gestation viral challenge of pregnant gilts. Initially, gene expression for three cell cycle promoters (CDK1, CDK2, CDK4) and one inhibitor (CDKN1A) were evaluated in biologically extreme phenotypic subsets including gestational age-matched controls (CON), uninfected (UNIF), high-viral load viable (HV-VIA), and high-viral load meconium-stained (HV-MEC) fetuses. There were no differences between CON and UNIF groups for any gene, indicating no impact of maternal infection alone. Relative to CON, high-viral load (HV-VIA, HV-MEC) fetuses showed significant downregulation of at least one CDK gene in all tissues except liver, while CDKN1A was upregulated in all tissues except muscle, with the heart and kidney most severely impacted. Subsequent evaluation of additional genes known to be upregulated following activation of P53 or TGFb/SMAD signaling cascades indicated neither pathway was responsible for the observed increase in CDKN1A. Finally, analysis of heart and kidney from a larger unselected population of infected fetuses from the same animal study showed that serum thyroxin and viral load were highly correlated with the expression of CDKN1A in both tissues. Collectively these results demonstrate the widespread suppression in cell division across all tissues in PRRSV infected fetuses and indicate a non-canonical regulatory mechanism.
Recently, in Winnipeg, the implementation of new bus rapid transit (BRT) system in the middle of the COVID-19 pandemic has raised many concerns, challenging the rationale behind the untimely release. However, the new BRT service can benefit low-income, socio-economically vulnerable, and transit captive passengers who must travel to essential services and work opportunities during the pandemic. This study evaluates whether the new BRT system has positive impacts on accessibility to such essential services during the pandemic. Isochrones with different time budgets as well as times of a day are generated based on high-resolution public transit network via the General Transit Feed Specification (GTFS) data and used for evaluating accessibility benefits before and after the BRT construction. The new BRT service in Winnipeg demonstrates varying accessibility impacts across different parts of the BRT corridor. Areas near dedicated lane-section show a significant increase, whereas areas near non-dedicated lane sections show a decrease in accessibility. Nevertheless, across the whole BRT corridor, the new BRT service presents an overall increase in accessibility to essential services. This demonstrates the positive accessibility benefits of the new BRT service to residents seeking essential services during the COVID-19 pandemic. A decrease in accessibility along some parts suggests the necessity of using local transit improvement strategies (e.g., dedicated lanes) to improve service speed when planning BRT services within urban areas.
A novel single material-based anti-resonant fiber is designed, investigated, and explored in this article with supports of up to 64 OAM modes over the 0.6 μm to 1.0 μm as operating wavelength. The other properties of the designed fiber including confinement loss (CL), OAM purity, effective refractive index differences (ERIDs), and dispersion variations provide the exceptional output. This fiber, the CL approximately varies between the 5.7031 × 10⁻⁵ dB/m to 9.2537 × 10⁻⁴ dB/m, the OAM purity is 97% to 99%, the ERIDs are higher than 10-4 for all the modes, and the least dispersion variations is −8.838 ps/km-nm for the EH1,1 mode. All the outstanding properties of the presented fiber are calculated using the FEM and the PML within the COMSOL Multiphysics simulator. Therefore, to the ideal of our knowledge, the proposed anti-resonant fiber is mostly applicable in the high-quality long-distance fiber communications system.
Background and objectives Safety and effectiveness concerns may preclude physicians from recommending vaccination in mild/moderate inborn errors of immunity (IEI). This study describes attitudes and practices regarding vaccination among physicians who care for patients with mild/moderate B cell or mild/moderate combined immunodeficiencies (CID) and vaccination completeness among patients diagnosed with IEIs. Methods Canadian physicians caring for children with IEI were surveyed about attitudes and practices regarding vaccination in mild/moderate IEI. Following informed consent, immunization records of pediatric patients with IEI evaluated before 7 years of age were reviewed. Vaccine completeness was defined at age 2 years as 4 doses of diphtheria-tetanus-pertussis (DTaP), 3 doses pneumococcal conjugate (PCV), and 1 dose measles-mumps-rubella (MMR) vaccines. At 7 years 5 doses of DTP and 2 doses MMR were required. Results Forty-five physicians from 8 provinces completed the survey. Most recommended inactivated vaccines for B cell deficiency: (84% (38/45) and CID (73% (33/45). Fewer recommended live attenuated vaccines (B cell: 53% (24/45), CID 31% (14/45)). Of 96 patients with IEI recruited across 7 centers, vaccination completeness at age 2 was 25/43 (58%) for predominantly antibody, 3/13 (23%) for CID, 7/35 (20%) for CID with syndromic features, and 4/4 (100%) for innate/phagocyte defects. Completeness at age 7 was 15%, 17%, 5%, and 33%, respectively. Conclusion Most physicians surveyed recommended inactivated vaccines in children with mild to moderate IEI. Vaccine completeness for all IEI was low, particularly at age 7. Further studies should address the reasons for low vaccine uptake among children with IEI and whether those with mild-moderate IEI, where vaccination is recommended, eventually receive all indicated vaccines.
The solar spectrum energy absorption is very important for designing any solar absorber. The need for absorbing visible, infrared, and ultraviolet regions is increasing as most of the absorbers absorb visible regions. We propose a metasurface solar absorber based on Ge2Sb2Te5 (GST) substrate which increases the absorption in visible, infrared and ultraviolet regions. GST is a phase-changing material having two different phases amorphous (aGST) and crystalline (cGST). The absorber is also analyzed using machine learning algorithm to predict the absorption values for different wavelengths. The solar absorber is showing an ultra-broadband response covering a 0.2–1.5 µm wavelength. The absorption analysis for ultra-violet, visible, and near-infrared regions for aGST and cGST is presented. The absorption of aGST design is better compared to cGST design. Furthermore, the design is showing polarization insensitiveness. Experiments are performed to check the K-Nearest Neighbors (KNN)-Regressor model’s prediction efficiency for predicting missing/intermediate wavelengths values of absorption. Different values of K and test scenarios; C-30, C-50 are used to evaluate regressor models using adjusted R² Score as an evaluation metric. It is detected from the experimental results that, high prediction proficiency (more than 0.9 adjusted R² score) can be accomplished using a lower value of K in KNN-Regressor model. The design results are optimized for geometrical parameters like substrate thickness, metasurface thickness, and ground plane thickness. The proposed metasurface solar absorber is absorbing ultraviolet, visible, and near-infrared regions which will be used in solar thermal energy applications.
This research paper proposes a simple hexa-spiral hexagonal photonic crystal fiber (HSH-PCF) design containing circular timbered air holes, exhibiting a highly nonlinear coefficient and negative dispersion with lower confinement loss. The Finite Element Method (FEM) has been applied here to inspect guiding properties. This propounded HSH-PCF covers all optical bands and windows in the design. The simulation analysis proves that the proposed HSH-PCF achieves a high nonlinear coefficient of 113.8(W.km)-1 at the wavelength of 1.55μm, negligible confinement loss, and the maximum negative dispersion amplitude of -864.5ps.(nm.km)-1. At a 40kW peak power with 20fs input pulse through the 1.5cm of fiber length, the PCF represents a wide-band supercontinuum generation band spectrum. So, the HSH-PCF officiates in several applications like high bit-rate data transfer, amplification of optical parameters, sensor designing of optical fibers, maintaining polarization, dispersion-compensating fibers, spectroscopy system, and other various purposes.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
9,480 members
Adelaine Leung
  • Department of Veterinary Biomedical Sciences
Sampath Perumal
  • Global Institute for Food Security
Kaliyaperumal Ashokkumar
  • Department of Plant Sciences
Kailash Prasad
  • Department of Physiology,College of Medicine
Information
Address
51 campus drive, s7n1l7, Saskatoon, Saskatchewan, Canada
Website
www.usask.ca