University Hospital Regensburg
Recent publications
Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6), a cell surface receptor, is expressed on normal epithelial tissue and highly expressed in cancers of high unmet medical need, such as non-small cell lung, pancreatic, and colorectal cancer. CEACAM receptors undergo homo- and heterophilic interactions thereby regulating normal tissue homeostasis and angiogenesis, and in cancer, tumor invasion and metastasis. CEACAM6 expression on malignant plasma cells inhibits antitumor activity of T cells, and we hypothesize a similar function on epithelial cancer cells. The interactions between CEACAM6 and its suggested partner CEACAM1 on T cells were studied. A humanized CEACAM6-blocking antibody, BAY 1834942, was developed and characterized for its immunomodulating effects in co-culture experiments with T cells and solid cancer cells and in comparison to antibodies targeting the immune checkpoints programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), and T cell immunoglobulin mucin-3 (TIM-3). The immunosuppressive activity of CEACAM6 was mediated by binding to CEACAM1 expressed by activated tumor-specific T cells. BAY 1834942 increased cytokine secretion by T cells and T cell-mediated killing of cancer cells. The in vitro efficacy of BAY 1834942 correlated with the degree of CEACAM6 expression on cancer cells, suggesting potential in guiding patient selection. BAY 1834942 was equally or more efficacious compared to blockade of PD-L1, and at least an additive efficacy was observed in combination with anti-PD-1 or anti-TIM-3 antibodies, suggesting an efficacy independent of the PD-1/PD-L1 axis. In summary, CEACAM6 blockade by BAY 1834942 reactivates the antitumor response of T cells. This warrants clinical evaluation.
RHOH/TFF, a member of the RAS GTPase super family, has important functions in lymphopoiesis and proximal T cell receptor signalling and has been implicated in a variety of leukaemias and lymphomas. RHOH was initially identified as a translocation partner with BCL-6 in non-Hodgkin lymphoma (NHL), and aberrant somatic hypermutation (SHM) in the 5ʹ untranslated region of the RHOH gene has also been detected in Diffuse Large B-Cell Lymphoma (DLBCL). Recent data suggest a correlation between RhoH expression and disease progression in Acute Myeloid Leukaemia (AML). However, the effects of RHOH mutations and translocations on RhoH expression and malignant transformation remain unknown. We found that aged Rhoh−/− (KO) mice had shortened lifespans and developed B cell derived splenomegaly with an increased Bcl-6 expression profile in splenocytes. We utilized a murine model of Bcl-6 driven DLBCL to further explore the role of RhoH in malignant behaviour by crossing RhohKO mice with Iµ-HABcl-6 transgenic (Bcl-6Tg) mice. The loss of Rhoh in Bcl-6Tg mice led to a more rapid disease progression. Mechanistically, we demonstrated that deletion of Rhoh in these murine lymphoma cells was associated with decreased levels of the RhoH binding partner KAISO, a dual-specific Zinc finger transcription factor, de-repression of KAISO target Bcl-6, and downregulation of the BCL-6 target Blimp-1. Re-expression of RhoH in RhohKOBcl-6Tg lymphoma cell lines reversed these changes in expression profile and reduced proliferation of lymphoma cells in vitro. These findings suggest a previously unidentified regulatory role of RhoH in the proliferation of tumour cells via altered BCL-6 expression. (250)
In patients with melanoma brain metastases (MBM), a combination of radiotherapy (RT) with immune checkpoint inhibitors (ICI) is routinely used. However, the best sequence of radio-immunotherapy (RIT) remains unclear. In an exploratory phase 2 trial, MBM patients received RT (stereotactic or whole-brain radiotherapy depending on the number of MBM) combined with ipilimumab (ipi) ± nivolumab (nivo) in different sequencing (Rad-ICI or ICI-Rad). Comparators arms included patients treated with ipi-free systemic treatment or without RT (in MBM-free patients). The primary endpoints were radiological and immunological responses in the peripheral blood. Secondary endpoints were progression-free survival (PFS) and overall survival (OS). Of 106 screened, 92 patients were included in the study. Multivariate analysis revealed an advantage for patients starting with RT (Rad-ICI) for overall response rate (RR: p = .007; HR: 7.88 (95%CI: 1.76-35.27)) and disease control rate (DCR: p = .036; HR: 6.26 (95%CI: 1.13-34.71)) with a trend for a better PFS (p = .162; HR: 1.64 (95%CI: 0.8-3.3)). After RT plus two cycles of ipi-based ICI in both RIT sequences, increased frequencies of activated CD4, CD8 T cells and an increase in melanoma-specific T cell responses were observed in the peripheral blood. Lasso regression analysis revealed a significant clinical benefit for patients treated with Rad-ICI sequence and immunological features, including high frequencies of memory T cells and activated CD8 T cells in the blood. This study supports increasing evidence that sequencing RT followed by ICI treatment may have better effects on the immunological responses and clinical outcomes in MBM patients.
Background In individuals suffering from a rare disease the diagnostic process and the confirmation of a final diagnosis often extends over many years. Factors contributing to delayed diagnosis include health care professionals' limited knowledge of rare diseases and frequent (co-)occurrence of mental disorders that may complicate and delay the diagnostic process. The ZSE-DUO study aims to assess the benefits of a combination of a physician focusing on somatic aspects with a mental health expert working side by side as a tandem in the diagnostic process. Study design This multi-center, prospective controlled study has a two-phase cohort design. Methods Two cohorts of 682 patients each are sequentially recruited from 11 university-based German Centers for Rare Diseases (CRD): the standard care cohort (control, somatic expertise only) and the innovative care cohort (experimental, combined somatic and mental health expertise). Individuals aged 12 years and older presenting with symptoms and signs which are not explained by current diagnoses will be included. Data will be collected prior to the first visit to the CRD’s outpatient clinic (T0), at the first visit (T1) and 12 months thereafter (T2). Outcomes Primary outcome is the percentage of patients with one or more confirmed diagnoses covering the symptomatic spectrum presented. Sample size is calculated to detect a 10 percent increase from 30% in standard care to 40% in the innovative dual expert cohort. Secondary outcomes are (a) time to diagnosis/diagnoses explaining the symptomatology; (b) proportion of patients successfully referred from CRD to standard care; (c) costs of diagnosis including incremental cost effectiveness ratios; (d) predictive value of screening instruments administered at T0 to identify patients with mental disorders; (e) patients’ quality of life and evaluation of care; and f) physicians’ satisfaction with the innovative care approach. Conclusions This is the first multi-center study to investigate the effects of a mental health specialist working in tandem with a somatic expert physician in CRDs. If this innovative approach proves successful, it will be made available on a larger scale nationally and promoted internationally. In the best case, ZSE-DUO can significantly shorten the time to diagnosis for a suspected rare disease. Trial registration; Identifier: NCT03563677; First posted: June 20, 2018, .
Background: Beyond the degree of adiposity, the pattern of fat distribution has a profound influence on cardiometabolic risk. It is unclear if sex differences in body fat distribution can potentially explain any sex differences in the prevalence of the metabolic syndrome (MetS) and in individual cardiometabolic risk factors among obese men and women. Methods: In this cross-sectional analysis, 432 persons from the ongoing Obesity Weight Reduction Study (n = 356 obese, ØBMI 41 ± 8 kg/m2, and 76 non-obese, ØBMI 25 ± 3 kg/m2), were included. The relations of sex to MetS prevalence and selected cardiometabolic risk factors were assessed using univariate and multivariate adjusted regression models. Results: In crude analyses, %fat mass and the fat mass/lean mass ratio were significantly higher in women than in men, regardless of increasing obesity categories, from normal weight to grade-3-obesity. In contrast, markers of abdominal obesity, such as waist circumference and waist-to-hip ratio were higher in men than in women, despite similar BMI. The prevalence of the MetS was higher in obese men than in women (67.6 vs. 45.0%, p < 0.0001), particularly in younger individuals < 40 years (72.5 vs. 36.8%, p < 0.0001), but "metabolically healthy obesity" (BMI ≥ 30, no other NCEP ATPIII MetS component) was more common in women than in men (15.6 vs. 4.1%, p < 0.0001). After adjusting for age, %body fat and height, sex differences were observed for HDL-cholesterol (p < 0.001), triglycerides (p < 0.001), fasting glucose (p = 0.002), insulin and HOMA-IR levels (p < 0.001), ALAT (p < 0.001), adiponectin (p < 0.001), and sE-selectin (p = 0.005). In contrast, crude sex differences in other variables, such as leptin levels (68 ± 4 in obese women vs. 33 ± 2 µg/L in men, p < 0.0001), disappeared after accounting for differences in %body fat (least-squares means of leptin: 52 ± 4 vs. 55 ± 6 µg /L, p = 0.740). A logistic regression model adjusting for age and lifestyle factors revealed a lower risk of having MetS for women as compared to men (OR = 0.38[0.22-0.60]). That risk estimate did not materially alter after adding BMI to the model. In contrast, no statistically significant association between sex and MetS prevalence was observed after adding waist circumference and adiponectin to the model (OR = 1.41[0.59-3.36]). Conclusions: Different body fat distribution patterns, particularly abdominal adiposity, adiponectin, and related biomarkers, may contribute to sex differences in cardiometabolic risk factors and to the prevalence of the MetS.
Background In severe cases, SARS-CoV-2 infection leads to acute respiratory distress syndrome (ARDS), often treated by extracorporeal membrane oxygenation (ECMO). During ECMO therapy, anticoagulation is crucial to prevent device-associated thrombosis and device failure, however, it is associated with bleeding complications. In COVID-19, additional pathologies, such as endotheliitis, may further increase the risk of bleeding complications. To assess the frequency of bleeding events, we analyzed data from the German COVID-19 autopsy registry (DeRegCOVID). Methods The electronic registry uses a web-based electronic case report form. In November 2021, the registry included N = 1129 confirmed COVID-19 autopsy cases, with data on 63 ECMO autopsy cases and 1066 non-ECMO autopsy cases, contributed from 29 German sites. Findings The registry data showed that ECMO was used in younger male patients and bleeding events occurred much more frequently in ECMO cases compared to non-ECMO cases (56% and 9%, respectively). Similarly, intracranial bleeding (ICB) was documented in 21% of ECMO cases and 3% of non-ECMO cases and was classified as the immediate or underlying cause of death in 78% of ECMO cases and 37% of non-ECMO cases. In ECMO cases, the three most common immediate causes of death were multi-organ failure, ARDS and ICB, and in non-ECMO cases ARDS, multi-organ failure and pulmonary bacterial ± fungal superinfection, ordered by descending frequency. Interpretation Our study suggests the potential value of autopsies and a joint interdisciplinary multicenter (national) approach in addressing fatal complications in COVID-19.
Background Thyroid hormone responsive protein (THRSP) is a lipogenic nuclear protein that is highly expressed in murine adipose tissue, but its role in humans remains unknown. Methods We characterized the insulin regulation of THRSP in vivo in human adipose tissue biopsies and in vitro in Simpson-Golabi-Behmel syndrome (SGBS) adipocytes . To this end, we measured whole-body insulin sensitivity using the euglycemic insulin clamp technique in 36 subjects [age 40 ± 9 years, body mass index (BMI) 27.3 ± 5.0 kg/m ² ]. Adipose tissue biopsies were obtained at baseline and after 180 and 360 min of euglycemic hyperinsulinemia for measurement of THRSP mRNA concentrations. To identify functions affected by THRSP, we performed a transcriptomic analysis of THRSP-silenced SGBS adipocytes. Mitochondrial function was assessed by measuring mitochondrial respiration as well as oxidation and uptake of radiolabeled oleate and glucose. Lipid composition in THRSP silencing was studied by lipidomic analysis. Results We found insulin to increase THRSP mRNA expression 5- and 8-fold after 180 and 360 min of in vivo euglycemic hyperinsulinemia. This induction was impaired in insulin-resistant subjects, and THRSP expression was closely correlated with whole-body insulin sensitivity. In vitro, insulin increased both THRSP mRNA and protein concentrations in SGBS adipocytes in a phosphoinositide 3-kinase (PI3K)-dependent manner. A transcriptomic analysis of THRSP-silenced adipocytes showed alterations in mitochondrial functions and pathways of lipid metabolism, which were corroborated by significantly impaired mitochondrial respiration and fatty acid oxidation. A lipidomic analysis revealed decreased hexosylceramide concentrations, supported by the transcript concentrations of enzymes regulating sphingolipid metabolism. Conclusions THRSP is regulated by insulin both in vivo in human adipose tissue and in vitro in adipocytes, and its expression is downregulated by insulin resistance. As THRSP silencing decreases mitochondrial respiration and fatty acid oxidation, its downregulation in human adipose tissue could contribute to mitochondrial dysfunction. Furthermore, disturbed sphingolipid metabolism could add to metabolic dysfunction in obese adipose tissue.
Zusammenfassung Der Trend zur Durchführung robotergestützter Operationen in der Thoraxchirurgie hat in den letzten 10 Jahren zugenommen. Die bekannten Vorteile der videoassistierten Thoraxchirurgie (VATS) im Vergleich zum offenen Zugang gelten auch für die Roboterchirurgie, ergänzt durch eine 3-D-Kamera, spezifische Instrumente mit großem Bewegungsumfang der Instrumentenspitze und eine ergonomische Konsole. Die Anwendung der Robotertechnologie bei thoraxchirurgischen Eingriffen hat sich als sicher und mit gleichwertigen onkologischen Ergebnissen erwiesen. Der Da Vinci-Roboter war das erste kommerziell erhältliche Robotersystem in der Chirurgie. In den letzten Jahren sind mehrere andere Robotersysteme auf den Markt gekommen. Im Aufbau und der Anwendung unterscheiden sich die aktuellen Robotersysteme. Das Ziel dieser Übersicht ist es, die aktuellen Systeme in der roboterassistierten Thoraxchirurgie (RATS) sowie zukünftige Entwicklungen bei RATS zu beschreiben.
Zusammenfassung In den vergangenen Jahren hat der Einsatz mechanischer Unterstützungssysteme für Patienten mit Herz- und Kreislaufversagen kontinuierlich zugenommen, sodass in Deutschland mittlerweile jährlich etwa 3000 ECLS-/ECMO-Systeme implantiert werden. Vor dem Hintergrund bislang fehlender umfassender Leitlinien bestand ein dringlicher Bedarf an der Formulierung evidenzbasierter Empfehlungen zu den zentralen Aspekten der ECLS-/ECMO-Therapie. Im Juli 2015 wurde daher die Erstellung einer S3-Leitlinie durch die Deutsche Gesellschaft für Thorax-, Herz- und Gefäßchirurgie (DGTHG) bei der zuständigen Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF) angemeldet. In einem strukturierten Konsensusprozess mit Einbindung von Experten aus Deutschland, Österreich und der Schweiz, delegiert aus 11 AWMF-Fachgesellschaften, 5 weiteren Fachgesellschaften sowie der Patientenvertretung, entstand unter Federführung der DGTHG die Leitlinie „Einsatz der extrakorporalen Zirkulation (ECLS/ECMO) bei Herz- und Kreislaufversagen“, die im Februar 2021 publiziert wurde. Die Leitlinie fokussiert auf klinische Aspekte der Initiierung, Fortführung, Entwöhnung und Nachsorge und adressiert hierbei auch strukturelle und ökonomische Fragestellungen. Dieser Artikel präsentiert eine Übersicht zu der Methodik und den konsentierten Empfehlungen.
Engineered regulatory T cell (Treg cell) therapy is a promising strategy to treat patients suffering from inflammatory diseases, autoimmunity, and transplant rejection. However, in many cases, disease-related antigens that can be targeted by Treg cells are not available. In this study, we introduce a class of synthetic biosensors, named artificial immune receptors (AIRs), for murine and human Treg cells. AIRs consist of three domains: (a) extracellular binding domain of a tumor necrosis factor (TNF)-receptor superfamily member, (b) intracellular costimulatory signaling domain of CD28, and (c) T cell receptor signaling domain of CD3-ζ chain. These AIR receptors equip Treg cells with an inflammation-sensing machinery and translate this environmental information into a CD3-ζ chain–dependent TCR-activation program. Different AIRs were generated, recognizing the inflammatory ligands of the TNF-receptor superfamily, including LIGHT, TNFα, and TNF-like ligand 1A (TL1A), leading to activation, differentiation, and proliferation of AIR–Treg cells. In a graft-versus-host disease model, Treg cells expressing lymphotoxin β receptor–AIR, which can be activated by the ligand LIGHT, protect significantly better than control Treg cells. Expression and signaling of the corresponding human AIR in human Treg cells prove that this concept can be translated. Engineering Treg cells that target inflammatory ligands leading to TCR signaling and activation might be used as a Treg cell–based therapy approach for a broad range of inflammation-driven diseases.
There is ample evidence of awareness of at least some unconscious patients. A recent multicenter study found significant reductions after therapeutic communication during general anesthesia in postoperative pain and analgesic consumption, as well as in postoperative nausea and vomiting (PONV) and antiemetic requirements in high-risk patients. Thus, an intraoperatively presentet text represents a simple non-pharmacological method to reduce side effects of surgery and anesthesia. This also offers treatment in other unconscious patients. However, another finding seems worth noting: the results of the study cannot be explained by the known intraoperative awareness and response of individual patients. Therefore, there should be a fundamental change in the way patients are treated in the operating room and intensive care unit, and background noise and careless conversations should be eliminated. 56 years after David Cheek formulated “BE CAREFUL, THE PATIENT IS LISTENING should be engraved over the door of every operating room, every recovery room, every intensive care unit in every hospital.” after his first observations of patient perceptions, perhaps it is now time to finally heed this call and to use communication with unconscious patients that goes beyond the most necessary announcement of interventions and is therapeutically effective through positive suggestions. When in doubt, assume that the patient is listening.
Importance: Insufficient treatment response and resulting chronicity constitute a major problem in depressive disorders. Remission rates range as low as 15% to 40% and treatment-resistant depression (TRD) is associated with low-grade inflammation, suggesting anti-inflammatory interventions as a rational treatment strategy. Minocycline, which inhibits microglial activation, represents a promising repurposing candidate in the treatment of TRD. Objective: To determine whether 6 weeks of minocycline as add-on to antidepressant treatment as usual can significantly reduce depressive symptoms in patients with TRD. Design, setting, and participants: The study was conducted in Germany and designed as a multicenter double-blind randomized clinical trial (RCT) of 200 mg/d minocycline treatment over a course of 6 weeks with a 6-month follow-up. Participants were recruited from January 2016 to August 2020 at 9 university hospitals that served as study sites. Key inclusion criteria were a diagnosis of major depressive disorder (according to Diagnostic and Statistical Manual of Mental Disorders [Fifth Edition] criteria), severity of depressive symptoms on the Hamilton Depression Rating Scale (HAMD-17) greater than or equal to 16 points, aged 18 to 75 years, body mass index 18 to 40, Clinical Global Impression Scale (CGI-S) greater than or equal to 4, failure to adequately respond to an initial antidepressant standard medication as per Massachusetts General Hospital Antidepressant Treatment History Questionnaire, and stable medication for at least 2 weeks. A total of 258 patients were screened, of whom 173 were randomized and 168 were included into the intention-to-treat population. Statistical analysis was performed from April to November 2020. Interventions: Participants were randomized (1:1) to receive adjunct minocycline (200 mg/d) or placebo for 6 weeks. Main outcomes and measures: Primary outcome measure was the change in Montgomery-Åsberg Depression Rating Scale (MADRS) score from baseline to week 6 analyzed by intention-to-treat mixed model repeated measures. Secondary outcome measures were response, remission, and various other clinical rating scales. Results: Of 173 eligible and randomized participants (84 randomized to minocycline and 89 randomized to placebo), 168 formed the intention-to-treat sample (79 [47.0%] were women, 89 [53.0%] were men, 159 [94.6%] were White, 9 [6.4%] were of other race and ethnicity, including Asian and unknown ethnicity), with 81 in the minocycline group and 87 in the placebo group. The mean (SD) age was 46.1 (13.1) years, and the mean (SD) MADRS score at baseline was 26.5 (5.0). There was no difference in rates of completion between the minocycline (83.3% [70 of 81]) and the placebo group (83.1% [74 of 87]). Minocycline treatment did not alter the course of depression severity compared with placebo as assessed by a decrease in MADRS scores over 6 weeks of treatment (1.46 [-1.04 to 3.96], P = .25). Minocycline treatment also exhibited no statistically significant effect on secondary outcomes. Conclusions and relevance: In this large randomized clinical trial with minocycline at a dose of 200 mg/d added to antidepressant treatment as usual for 6 weeks, minocycline was well tolerated but not superior to placebo in reducing depressive symptoms in patients with TRD. The results of this RCT emphasize the unmet need for therapeutic approaches and predictive biomarkers in TRD. Trial registration: EU Clinical Trials Register Number: EudraCT 2015-001456-29.
Childhood obesity is a growing problem in industrial societies and associated with increased leptin levels in serum and salvia. Orthodontic treatment provokes pressure and tension zones within the periodontal ligament, where, in addition to fibroblasts, macrophages are exposed to these mechanical loadings. Given the increasing number of orthodontic patients with these conditions, insights into the effects of elevated leptin levels on the expression profile of macrophages during mechanical strain are of clinical interest. Therefore, the aim of this in vitro study was to assess the influence of leptin on the expression profile of macrophages during simulated orthodontic treatment. RAW264.7 macrophages were incubated with leptin and lipopolysaccharides (LPS) from Porphyromonas gingivalis (P. gingivalis) or with leptin and different types of mechanical strain (tensile, compressive strain). Expression of inflammatory mediators including tumor necrosis factor (TNF), Interleukin-1-B (IL1B), IL6, and prostaglandin endoperoxide synthase (PTGS2) was assessed by RT-qPCR, ELISAs, and immunoblot. Without additional mechanical loading, leptin increased Tnf, Il1b, Il6, and Ptgs2 mRNA in RAW264.7 macrophages by itself and after stimulation with LPS. However, in combination with tensile or compressive strain, leptin reduced the expression and secretion of these inflammatory factors. By itself and in combination with LPS from P. gingivalis, leptin has a pro-inflammatory effect. Both tensile and compressive strain lead to increased expression of inflammatory genes. In contrast to its effect under control conditions or after LPS treatment, leptin showed an anti-inflammatory phenotype after mechanical stress.
Background Dyspnea is a frequent symptom in patients with stable coronary artery disease (CAD) and is recognized as a possible angina equivalent. Objectives This study was to assess the impact of percutaneous coronary intervention (PCI) on dyspnea, quality of life, and angina pectoris in patients with stable CAD. Methods The prospective, multi-center PLA-pCi-EBO-pilot trial included 144 patients with symptomatic stable CAD and successful PCI. The prespecified endpoints angina pectoris (Seattle Angina Questionnaire–SAQ) and dyspnea (NYHA scale) were assessed 6 months after PCI. Predictors for symptomatic improvement were assessed with uni- and multivariable logistic regression analyses. Results Patients with concomitant dyspnea had worse SAQ physical limitation scores at baseline (49.5 ± 21.0 vs 58.9 ± 22.0, p = 0.013) but showed no difference for angina frequency or quality of life. Overall, symptomatic burden of angina pectoris and dyspnea was alleviated by PCI. However, patients with concomitant dyspnea had markedly worse scores for physical limitation (78.9 ± 25.0 vs 94.3 ± 10.6, p < 0.001), angina frequency (77.9 ± 22.8 vs 91.1 ± 12.4, p < 0.001), and quality of life (69.4 ± 24.1 vs 82.5 ± 14.4, p < 0.001) after PCI. The prevalence of dyspnea (NYHA class ≥ 2) declined from 73% before PCI to 54%. Of 95 initially dyspneic patients, 57 (60%) improved at least one NYHA class 6 months after PCI. In a multivariable logistic regression analysis, “atypical angina pectoris” was associated with improved NYHA class, whereas “diabetes mellitus” had a negative association. Conclusion PCI effectively reduced dyspnea, which is a frequent and demanding symptom in patients with CAD. The German Clinical Trials Register registration number is DRKS0001752 ( ). Graphical abstract
The standard primary treatment for acute graft vs host disease (GVHD) requires prolonged, high dose systemic corticosteroids (SCS) that delay reconstitution of the immune system. We used validated clinical and biomarker staging criteria to identify a group of patients with low risk (LR) GVHD that is very likely to respond to SCS. We hypothesized that itacitinib, a selective JAK1 inhibitor, would effectively treat LR GVHD without SCS. We treated 70 patients with LR GVHD in a multicenter, phase 2 trial (NCT03846479) with 28 days of itacitinib 200 mg/day (responders could receive a second 28-day cycle) and compared their outcomes to 140 contemporaneous, matched control patients treated with SCS. More patients responded to itacitinib within 7 days (81% vs 66%, p=0.02) and response rates at day 28 were very high for both groups (89% vs 86%, p=0.67) with few symptomatic flares (11% vs 12%, p=0.88). Fewer itacitinib treated patients developed a serious infection within 90 days (27% vs 42%, p=0.04) due to fewer viral and fungal infections. Grade ≥3 cytopenias were similar between groups except for less severe leukopenia with itacitinib (16% vs 31%, p=0.02). No other grade ≥3 adverse events occurred in >10% of itacitinib treated patients. There were no significant differences between groups at 1-year for non-relapse mortality (4% vs 11%, p=0.21), relapse (18% vs 21%, p=0.64), chronic GVHD (28% vs 33%, p=0.33) or survival (88% vs 80%, p=0.11). Itacitinib monotherapy seems to be a safe and effective alternative to SCS treatment for LR GVHD that deserves further investigation.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
926 members
Jürgen Wenzel
  • Institute of Clinical Microbiology and Hygiene
Udo Reischl
  • Institut für Klinische Mikrobiologie und Hygiene
Frank Karl Braun
  • Abteilung für Neuropathologie
Franz-J.-Strauss-Allee 11, 93055, Regensburg, Germany
Head of institution
C. Stroszczynski