Universität zu Lübeck
  • Lübeck, Schleswig-Holstein, Germany
Recent publications
The use of Environmental Microorganisms (EMs) offers a highly efficient, low cost and harmless remedy to environmental pollution, by monitoring and decomposing of pollutants. This relies on how the EMs are correctly segmented and identified. With the aim of enhancing the segmentation of weakly visible EM images which are transparent, noisy and have low contrast, a Pairwise Deep Learning Feature Network (PDLF-Net) is proposed in this study. The use of PDLFs enables the network to focus more on the foreground (EMs) by concatenating the pairwise deep learning features of each image to different blocks of the base model SegNet. Leveraging the Shi and Tomas descriptors, we extract each image’s deep features on the patches, which are centred at each descriptor using the VGG-16 model. Then, to learn the intermediate characteristics between the descriptors, pairing of the features is performed based on the Delaunay triangulation theorem to form pairwise deep learning features. In this experiment, the PDLF-Net achieves outstanding segmentation results of 89.24%, 63.20%, 77.27%, 35.15%, 89.72%, 91.44% and 89.30% on the accuracy, IoU, Dice, VOE, sensitivity, precision and specificity, respectively.
The use of animals as models of human physiology is, and has been for many years, an indispensable tool for understanding the mechanisms of human disease. In Parkinson’s disease, various mouse models form the cornerstone of these investigations. Early models were developed to reflect the traditional histological features and motor symptoms of Parkinson’s disease. However, it is important that models accurately encompass important facets of the disease to allow for comprehensive mechanistic understanding and translational significance. Circadian rhythm and sleep issues are tightly correlated to Parkinson’s disease, and often arise prior to the presentation of typical motor deficits. It is essential that models used to understand Parkinson’s disease reflect these dysfunctions in circadian rhythms and sleep, both to facilitate investigations into mechanistic interplay between sleep and disease, and to assist in the development of circadian rhythm-facing therapeutic treatments. This review describes the extent to which various genetically- and neurotoxically-induced murine models of Parkinson’s reflect the sleep and circadian abnormalities of Parkinson’s disease observed in the clinic.
Murine acetaminophen-induced acute liver injury (ALI) serves as paradigmatic model for drug-induced hepatic injury and regeneration. As major cause of ALI, acetaminophen overdosing is a persistent therapeutic challenge with N-acetylcysteine clinically used to ameliorate parenchymal necrosis. To identify further treatment strategies that serve patients with poor N-acetylcysteine responses, hepatic 3′mRNA sequencing was performed in the initial resolution phase at 24 h/48 h after sublethal overdosing. This approach disclosed 45 genes upregulated (≥5-fold) within this time frame. Focusing on C5aR1, we observed in C5aR1-deficient mice disease aggravation during resolution of intoxication as evidenced by increased liver necrosis and serum alanine aminotransferase. Moreover, decreased hepatocyte compensatory proliferation and increased caspase-3 activation at the surroundings of necrotic cores were detectable in C5aR1-deficient mice. Using a non-hypothesis-driven approach, herein pro-regenerative/-resolving effects of C5aR1 were identified during late acetaminophen-induced ALI. Data concur with protection by the C5a/C5aR1-axis during hepatectomy and emphasize the complex role of inflammation during hepatic regeneration and repair.
The majority of risk loci identified by genome-wide association studies (GWAS) are in non-coding regions, hampering their functional interpretation. Instead, transcriptome-wide association studies (TWAS) identify gene-trait associations, which can be used to prioritize candidate genes in disease-relevant tissue(s). Here, we aimed to systematically identify susceptibility genes for coronary artery disease (CAD) by TWAS. We trained prediction models of nine CAD-relevant tissues using EpiXcan based on two genetics-of-gene-expression panels, the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) and the Genotype-Tissue Expression (GTEx). Based on these prediction models, we imputed gene expression of respective tissues from individual-level genotype data on 37,997 CAD cases and 42,854 controls for the subsequent gene-trait association analysis. Transcriptome-wide significant association (i.e. P < 3.85e−6) was observed for 114 genes. Of these, 96 resided within previously identified GWAS risk loci and 18 were novel. Stepwise analyses were performed to study their plausibility, biological function, and pathogenicity in CAD, including analyses for colocalization, damaging mutations, pathway enrichment, phenome-wide associations with human data and expression-traits correlations using mouse data. Finally, CRISPR/Cas9-based gene knockdown of two newly identified TWAS genes, RGS19 and KPTN , in a human hepatocyte cell line resulted in reduced secretion of APOB100 and lipids in the cell culture medium. Our CAD TWAS work (i) prioritized candidate causal genes at known GWAS loci, (ii) identified 18 novel genes to be associated with CAD, and iii) suggested potential tissues and pathways of action for these TWAS CAD genes.
Background Increased total tau (t-tau) in cerebrospinal fluid (CSF) is a key characteristic of Alzheimer’s disease (AD) and is considered to result from neurodegeneration. T-tau levels, however, can be increased in very early disease stages, when neurodegeneration is limited, and can be normal in advanced disease stages. This suggests that t-tau levels may be driven by other mechanisms as well. Because tau pathophysiology is emerging as treatment target for AD, we aimed to clarify molecular processes associated with CSF t-tau levels. Methods We performed a proteomic, genomic, and imaging study in 1380 individuals with AD, in the preclinical, prodromal, and mild dementia stage, and 380 controls from the Alzheimer’s Disease Neuroimaging Initiative and EMIF-AD Multimodality Biomarker Discovery study. Results We found that, relative to controls, AD individuals with increased t-tau had increased CSF concentrations of over 400 proteins enriched for neuronal plasticity processes. In contrast, AD individuals with normal t-tau had decreased levels of these plasticity proteins and showed increased concentrations of proteins indicative of blood–brain barrier and blood-CSF barrier dysfunction, relative to controls. The distinct proteomic profiles were already present in the preclinical AD stage and persisted in prodromal and dementia stages implying that they reflect disease traits rather than disease states. Dysregulated plasticity proteins were associated with SUZ12 and REST signaling, suggesting aberrant gene repression. GWAS analyses contrasting AD individuals with and without increased t-tau highlighted several genes involved in the regulation of gene expression. Targeted analyses of SNP rs9877502 in GMNC , associated with t-tau levels previously, correlated in individuals with AD with CSF concentrations of 591 plasticity associated proteins. The number of APOE-e4 alleles, however, was not associated with the concentration of plasticity related proteins. Conclusions CSF t-tau levels in AD are associated with altered levels of proteins involved in neuronal plasticity and blood–brain and blood-CSF barrier dysfunction. Future trials may need to stratify on CSF t-tau status, as AD individuals with increased t-tau and normal t-tau are likely to respond differently to treatment, given their opposite CSF proteomic profiles.
Surgical face masks reduce the spread of airborne pathogens but also disturb the flow of information between individuals. The risk of getting seriously ill after infection with SARS-COV-2 during the present COVID-19 pandemic amplifies with age, suggesting that face masks should be worn especially during face-to-face contact with and between older people. However, the ability to accurately perceive and understand communication signals decreases with age, and it is currently unknown whether face masks impair facial communication more severely in older people. We compared the impact of surgical face masks on dynamic facial emotion recognition in younger (18–30 years) and older (65–85 years) adults (N = 96) in an online study. Participants watched short video clips of young women who facially expressed anger, fear, contempt or sadness. Faces of half of the women were covered by a digitally added surgical face mask. As expected, emotion recognition accuracy declined with age, and face masks reduced emotion recognition accuracy in both younger and older participants. Unexpectedly, the effect of face masks did not differ between age groups. Further analyses showed that masks also reduced the participants’ overall confidence in their emotion judgements, but not their performance awareness (the difference between their confidence ratings for correct and incorrect responses). Again, there were no mask-by-age interactions. Finally, data obtained with a newly developed questionnaire ( attitudes towards face masks, atom ) suggest that younger and older people do not differ in how much they feel impaired in their understanding of other people’s emotions by face masks or how useful they find face masks in confining the COVID-19 pandemic. In sum, these findings do not provide evidence that the impact of face masks on the decoding of facial signals is disproportionally larger in older people.
Living organisms constantly need to adapt to their surrounding environment and have evolved sophisticated mechanisms to deal with stress. Mitochondria and lysosomes are central organelles in the response to energy and nutrient availability within a cell and act through interconnected mechanisms. However, when such processes become overwhelmed, it can lead to pathologies. Parkinson’s disease (PD) is a common neurodegenerative disorder (NDD) characterized by proteinaceous intracellular inclusions and progressive loss of dopaminergic neurons, which causes motor and non-motor symptoms. Genetic and environmental factors may contribute to the disease etiology. Mitochondrial dysfunction has long been recognized as a hallmark of PD pathogenesis, and several aspects of mitochondrial biology are impaired in PD patients and models. In addition, defects of the autophagy-lysosomal pathway have extensively been observed in cell and animal models as well as PD patients’ brains, where constitutive autophagy is indispensable for adaptation to stress and energy deficiency. Genetic and molecular studies have shown that the functions of mitochondria and lysosomal compartments are tightly linked and influence each other. Connections between these organelles are constituted among others by mitophagy, organellar dynamics and cellular signaling cascades, such as calcium (Ca ²⁺ ) and mTOR (mammalian target of rapamycin) signaling and the activation of transcription factors. Members of the Microphthalmia-associated transcription factor family (MiT), including MITF, TFE3 and TFEB, play a central role in regulating cellular homeostasis in response to metabolic pressure and are considered master regulators of lysosomal biogenesis. As such, they are part of the interconnection between mitochondria and lysosome functions and therefore represent attractive targets for therapeutic approaches against NDD, including PD. The activation of MiT transcription factors through genetic and pharmacological approaches have shown encouraging results at ameliorating PD-related phenotypes in in vitro and in vivo models. In this review, we summarize the relationship between mitochondrial and autophagy-lysosomal functions in the context of PD etiology and focus on the role of the MiT pathway and its potential as pharmacological target against PD.
Laser photocoagulation is one of the most frequently used treatment approaches for retinal diseases such as diabetic retinopathy and macular edema. The use of model-based control, such as Model Predictive Control (MPC), enhances a safe and effective treatment by guaranteeing temperature bounds. In general, real-time requirements for model-based control designs are not met since the temperature distribution in the eye fundus is governed by a heat equation with a nonlinear parameter dependency. This issue is circumvented by representing the model by a lower-dimensional system which well-approximates the original model, including the parametric dependency. We combine a global-basis approach with the discrete empirical interpolation method, tailor its hyperparameters to laser photocoagulation, and show its superiority in comparison to a recently proposed method based on Taylor-series approximation. Its effectiveness is measured in computation time for MPC. We further present a case study to estimate the range of absorption parameters in porcine eyes, and by means of a theoretical and numerical sensitivity analysis we show that the sensitivity of the temperature increase is higher with respect to the absorption coefficient of the retinal pigment epithelium (RPE) than of the choroid’s.
For better estimation of renewable environmental friendly and carbon-free energy resources, precise prediction of solar energy is very essential. However, accurate prediction of solar energy is a challenging task due to its fluctuations and due to climatic factors those make it very nonlinear in nature. Therefore, in this study, the novel robust soft computing method is applied to predict solar radiation of two stations located in the southeast region of China. For modeling solar radiation of selected stations, the improved version of multi verse optimizer algorithm (IMVO) is utilized with integration of least square support vector machine (LSSVM) for better tuning the hyperparameters of LSSVM model. For validation, the newly developed method is compared with other algorithms integrated with LSSVM models, such as LSSVM with genetic algorithm (LSSVM-GE), LSSVM with gray wolf optimization (LSSVM-GWO), LSSVM with sine–cosine algorithm (LSSVM-CSA) and LSSVM with multi verse algorithm original version (LSSVM-MVO). It is found that newly developed method, LSSVM-IMVO, provided more accurate results in comparison to other models. For better visualization of data and model application, three different training testing data splitting strategies are used. It is found that the increase in training sample size considerably improved the models’ accuracies.
Most patients with Post COVID Syndrome (PCS) present with a plethora of symptoms without clear evidence of organ dysfunction. A subset of them fulfills diagnostic criteria of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Symptom severity of ME/CFS correlates with natural regulatory autoantibody (AAB) levels targeting several G-protein coupled receptors (GPCR). In this exploratory study, we analyzed serum AAB levels against vaso- and immunoregulatory receptors, mostly GPCRs, in 80 PCS patients following mild-to-moderate COVID-19, with 40 of them fulfilling diagnostic criteria of ME/CFS. Healthy seronegative (n=38) and asymptomatic post COVID-19 controls (n=40) were also included in the study as control groups. We found lower levels for various AABs in PCS compared to at least one control group, accompanied by alterations in the correlations among AABs. Classification using random forest indicated AABs targeting ADRB2, STAB1, and ADRA2A as the strongest classifiers (AABs stratifying patients according to disease outcomes) of post COVID-19 outcomes. Several AABs correlated with symptom severity in PCS groups. Remarkably, severity of fatigue and vasomotor symptoms were associated with ADRB2 AAB levels in PCS/ME/CFS patients. Our study identified dysregulation of AAB against various receptors involved in the autonomous nervous system (ANS), vaso-, and immunoregulation and their correlation with symptom severity, pointing to their role in the pathogenesis of PCS.
Premonitory urges preceding tics are a cardinal feature of Gilles de la Tourette syndrome (GTS), a developmental disorder usually starting during middle childhood. However, the temporal relation between urges and tics has only been investigated in adults. In 25 children and adolescents with GTS (8-18 years), we assess urge-tic associations, including inter-individual differences, correlation to clinical measures, and in comparison to adult GTS patients. Group-level analyses confirmed positive associations between urges and tics. However, at the individual level, less than half of participants showed positive associations, a similar proportion did not, and in two participants, the association was reversed. Tic expression and subjective urge levels correlated with corresponding clinical scores and participants with more severe tics during the urge monitor exhibited stronger urge-tic associations. Associations between reported urge levels and instantaneous tic intensity tended to be less pronounced in children and adolescents than inadult GTS patients. The observed heterogeneity of urge-tic associations cast doubt on the notion that tics are directly caused by urges. More severe tics may facilitate anticipation of tics and thereby lead to more pronounced urge-tic associations, consistent with a hypothesis of urges as a byproduct of tics.
Adverse effects of psychological stress on physical and mental health, especially in older age, are well documented. How perceived stress relates to the epigenetic clock measure, DNA methylation age acceleration (DNAmAA), is less well understood and existing studies reported inconsistent results. DNAmAA was estimated from five epigenetic clocks (7-CpG, Horvath’s, Hannum’s, PhenoAge and GrimAge DNAmAA). Cohen’s Perceived Stress Scale (PSS) was used as marker of psychological stress. We analyzed data from 1,100 Berlin Aging Study II (BASE-II) participants assessed as part of the GendAge study (mean age = 75.6 years, SD = 3.8 years, 52.1% women). In a first step, we replicated well-established associations of perceived stress with morbidity, frailty, and symptoms of depression in the BASE-II cohort studied here. In a second step, we did not find any statistically significant association of perceived stress with any of the five epigenetic clocks in multiple linear regression analyses that adjusted for covariates. Although the body of literature suggests an association between higher DNAmAA and stress or trauma during early childhood, the current study found no evidence for an association of perception of stress with DNAmAA in older people. We discuss possible reasons for the lack of associations and highlight directions for future research.
The neurophysiological technique motor unit number index (MUNIX) is increasingly used in clinical trials to measure loss of motor units. However, the heterogeneous disease course in amyotrophic lateral sclerosis (ALS) obfuscates robust correlations between clinical status and electrophysiological assessments. To address this heterogeneity, MUNIX was applied in the D50 disease progression model by analyzing disease aggressiveness (D50) and accumulation (rD50 phase) in ALS separately. 237 ALS patients, 45 controls and 22 ALS-Mimics received MUNIX of abductor pollicis brevis (APB), abductor digiti minimi (ADM) and tibialis anterior (TA) muscles. MUNIX significantly differed between controls and ALS patients and between ALS-Mimics and controls. Within the ALS cohort, significant differences between Phase I and II revealed in MUNIX, compound muscle action potential (CMAP) and motor unit size index (MUSIX) of APB as well as in MUNIX and CMAP of TA. For the ADM, significant differences occurred later in CMAP and MUNIX between Phase II and III/IV. In contrast, there was no significant association between disease aggressiveness and MUNIX. In application of the D50 disease progression model, MUNIX can demonstrate disease accumulation already in early Phase I and evaluate effects of therapeutic interventions in future therapeutic trials independent of individual disease aggressiveness.
Despite recent improvements, complete motor recovery occurs in <15% of stroke patients. To improve the therapeutic outcomes, there is a strong need to tailor treatments to each individual patient. However, there is a lack of knowledge concerning the precise neuronal mechanisms underlying the degree and course of motor recovery and its individual differences, especially in the view of brain network properties despite the fact that it became more and more clear that stroke is a network disorder. The TiMeS project is a longitudinal exploratory study aiming at characterizing stroke phenotypes of a large, representative stroke cohort through an extensive, multi-modal and multi-domain evaluation. The ultimate goal of the study is to identify prognostic biomarkers allowing to predict the individual degree and course of motor recovery and its underlying neuronal mechanisms paving the way for novel interventions and treatment stratification for the individual patients. A total of up to 100 patients will be assessed at 4 timepoints over the first year after the stroke: during the first (T1) and third (T2) week, then three (T3) and twelve (T4) months after stroke onset. To assess underlying mechanisms of recovery with a focus on network analyses and brain connectivity, we will apply synergistic state-of-the-art systems neuroscience methods including functional, diffusion, and structural magnetic resonance imaging (MRI), and electrophysiological evaluation based on transcranial magnetic stimulation (TMS) coupled with electroencephalography (EEG) and electromyography (EMG). In addition, an extensive, multi-domain neuropsychological evaluation will be performed at each timepoint, covering all sensorimotor and cognitive domains. This project will significantly add to the understanding of underlying mechanisms of motor recovery with a strong focus on the interactions between the motor and other cognitive domains and multimodal network analyses. The population-based, multi-dimensional dataset will serve as a basis to develop biomarkers to predict outcome and promote personalized stratification toward individually tailored treatment concepts using neuro-technologies, thus paving the way toward personalized precision medicine approaches in stroke rehabilitation.
Recently, COVID-19 vaccination-induced exacerbation or new-onset of psoriasis have been reported. Underlying immune pathogenesis is unclear and different mechanisms are assumed. Further, clinical- and vaccine-related features and characteristics are partly inconsistent and remain to be elucidated. To add to the understanding of COVID-19 vaccination-triggered psoriasis, we report five cases with exacerbation or new-onset of psoriasis. In our cohort, one patient experienced the new onset of psoriasis, while four had an exacerbation following COVID-19 vaccination. In most patients, exacerbation or new onset occurred after the 2nd or 3rd vaccination. The mean latency from the day of vaccination was 7.2 (1.8) days (SD). The clinical impact with a mean PASI increase following COVID-19 vaccination of 7.2 (5.6) was considered relevant. In most cases, psoriatic lesions almost cleared after applying topical steroids in addition to current treatment, while one patient with psoriatic arthritis required systemic treatment. New onset and exacerbation of psoriasis have also been noted following COVID-19 infections. Hence, the underlying inflammatory response is most likely the culprit agent triggering psoriasis. This underscores that the benefits of COVID-19 vaccination far outweigh the risks, as also in patients with psoriasis.
Background: Coding and noncoding repeat expansions are an important cause of neurodegenerative diseases. Objective: This study determined the clinical and genetic features of a large German family that has been followed for almost 2 decades with an autosomal dominantly inherited spinocerebellar ataxia (SCA) and independent co-occurrence of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Methods: We carried out clinical examinations and telephone interviews, reviewed medical records, and performed magnetic resonance imaging and positron emission tomography scans of all available family members. Comprehensive genetic investigations included linkage analysis, short-read genome sequencing, long-read sequencing, repeat-primed polymerase chain reaction, and Southern blotting. Results: The family comprises 118 members across seven generations, 30 of whom were definitely and five possibly affected. In this family, two different pathogenic mutations were found, a heterozygous repeat expansion in C9ORF72 in four patients with ALS/FTD and a heterozygous repeat expansion in DAB1 in at least nine patients with SCA, leading to a diagnosis of DAB1-related ataxia (ATX-DAB1; SCA37). One patient was affected by ALS and SCA and carried both repeat expansions. The repeat in DAB1 had the same configuration but was larger than those previously described ([ATTTT]≈75 [ATTTC]≈40-100 [ATTTT]≈415 ). Clinical features in patients with SCA included spinocerebellar symptoms, sometimes accompanied by additional ophthalmoplegia, vertical nystagmus, tremor, sensory deficits, and dystonia. After several decades, some of these patients suffered from cognitive decline and one from additional nonprogressive lower motor neuron affection. Conclusion: We demonstrate genetic and clinical findings during an 18-year period in a unique family carrying two different pathogenic repeat expansions, providing novel insights into their genotypic and phenotypic spectrums. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
2,287 members
Reinhard Depping
  • Institute of Physiology
Christian Sadik
  • Department of Dermatology
Nina Perwitz
  • Department of Internal Medicine I
Tamas Laskay
  • Department of Infectious Diseases and Microbiology
Information
Address
Ratzeburger Allee 160, 23538, Lübeck, Schleswig-Holstein, Germany
Head of institution
Prof. Dr. med. Gabriele Gillessen-Kaesbach
Website
www.uni-luebeck.de
Phone
+49 451 3101 1000