Università Telematica Guglielmo Marconi
Recent publications
Hot gas conditioning is a remarkable stage for decreasing typical and harsh contaminants of syngas produced in the biomass gasification process. Downstream contaminants containing hydrogen sulphide (H2S) can significantly deteriorate fuel stream conversion reactors and fuel cell systems. Thus, an effective gas cleaning stage is required to remove critical streams that endanger the whole pathway toward the biomass conversion process. In this work, we studied H2S capture from biofuel syngas by using a kinetic deactivation model to analyze the effect of the operating conditions on the adsorption performance. Furthermore, the particle sorbent influence on other reactions, such as methane reforming and water gas shift (WGS), were also evaluated. Breakthrough curves were plotted and fitted following a first-order linearized deactivation model to perform both the H2S adsorption capacity and thermodynamic analysis. Moreover, the influence of the operating conditions was studied through a breakthrough curve simulation. By using the Arrhenius and Eyring–Polanyi expressions, it was possible to calculate the activation energy and some thermodynamic parameters from the transition state theory. Finally, a mathematical analysis was performed to obtain the diffusion coefficient (D) and the kinetic reaction constant (k¯0) of H2S gas within ZnO particles, considering a spherical geometry.
In the European Union, the eCall system has been mandatory since 31 March 2018. The system enabled a significant increase in safety on roads and highways, making help faster in the event of an accident. However, based on circuit-switched 2G/3G communications and an onboard device called IVS, it is generally unavailable on legacy vehicles. Some of its limitations tend to be remedied by the future NG eCall based on 4G/5G packet-switched communications. This paper discusses why the IVS may be an Achilles’ heel of any future IVS-based eCall and analyzes the advantages of a smartphone-based system. The TEZE system, starting to be implemented and installed in Italian highway tunnels, is one first general-purpose safety system, allowing highly reliable smartphone-based emergency calls. It is based on a dedicated low-cost ground infrastructure that allows monitoring of the availability of emergency call service through the mobile radio networks of the operators present inside a tunnel. The system complies with the ISO/IEC 30141:2018 reference standard. Identifying functional/non-functional requirements and their verification criteria provides an overall validation of the analyzed system. The TEZE system has been implemented and tested on the field. We report and comment on some experimental results. The paper also examines some key functionalities for vehicular services that can be implemented in an integrated system based on smartphones and heterogeneous networks.
The ability of the brain to change structure and function in response to experience accounts for its ability to successfully adapt to the environment in both learning processes and unique phases, such as during development and repair. On this basis, the occurrence of the brain, cognitive, and neural reserves has been advanced to explain the discrepancies between the extent of neurological damage and the severity of clinical manifestations described in patients with different life span experiences. Research on this topic highlighted the neuroprotective role of complex stimulations, allowing the brain to better cope with the damage. This framework was initially developed by observing patients with Alzheimer's disease, and it has since been progressively expanded to multifarious pathological states. The cerebellum is known to be particularly responsive to experience through extensive plastic rearrangements. The neuroprotective value exerted by reserve mechanisms appears to be suitable for basic neuronal plasticity in the cerebellum. Thus, it is of primary interest to deepen our understanding of how life experiences modify individuals' cerebellar morphology and functionality. The present study is aimed at analyzing the evidence provided on this topic by animal and human studies. For animals, we considered the studies in which subjects were submitted to enhanced stimulations before the damage occurred. For humans, we considered studies in which previous lifelong high-level experiences were associated with superior cerebellar abilities to cope with injury. Detailed indications of the processes underlying cerebellar reserves may be important in proposing effective interventions for patients suffering from pathologies that directly or indirectly damage cerebellar functionality.
Statistical learners are leading towards auto-epistemic logic, but is it the right way to progress in artificial intelligence (AI)? Ways to discover AI fit the senses and the intellect. The structure of symbols–the operations by which the intellectual solution is realized–and the search for strategic reference points evoke essential issues in the analysis of AI. Studying how knowledge can be represented through methods of theoretical generalization and empirical observation is only the latest step in a long process of evolution. In this paper, we try to outline the origin of knowledge and how modern artificial minds have inherited it.
Cognitive and affective impairments in processing body image have been observed in patients with Anorexia Nervosa (AN) and may induce the hypercontrolled and regulative behaviors observed in this disorder. Here, we aimed to probe the link between activation of body representations and cognitive control by investigating the ability to resolve body-related representational conflicts in women with restrictive AN and matched healthy controls (HC). Participants performed a modified version of the Flanker task in which underweight and overweight body images were presented as targets and distractors; a classic version of the task, with letters, was also administered as a control. The findings indicated that performance was better among the HC group in the task with bodies compared to the task with letters; however, no such facilitation was observed in AN patients, whose overall performance was poorer than that of the HC group in both tasks. In the task with body stimuli, performance among patients with AN was the worst on trials presenting underweight targets with overweight bodies as flankers. These results may reflect a dysfunctional association between the processing of body-related representations and cognitive control mechanisms that may aid clinicians in the development of optimal individualized treatments.
In this study we propose a model for building a holographic ultrasound microscope. In this model two mobile phones are first connected by waves and techniques like the WhatsApp waves. If the mobile phones are close to each other, their inductors and speakers become entangled, they exchange electromagnetic and sound waves, and they vibrate many times with each other. Objects placed between two mobile phones change the sound waves and electromagnetic waves and appear as holographic images within the inductors and also on the plastic of the speakers. To see these images, a hologram machine is built from a room of plastic, one or two magnets, iron particles, and sound producers. Holographic waves change the magnetic field within the hologram machine and move the plastic and iron particles. These objects take the shape of waves and produce holographic images. To see microbes, one can send a weak current to a container of microbes and then connect it to an amplifier. The weak current takes the shape of the microbes and is amplified by one strong amplifier. Then this current goes to the mobile phone and sound card and, after passing some stages, is sent to the second mobile phone. In the second mobile phone, the sound wave is amplified by speakers and transmitted to the hologram machine. Consequently, particles within this machine move and produce big holographic images of the microbes.
The railway sector has been characterized by important innovations regarding digital technologies for train-to-ground communications. The actual GSM-R system is considered an obso-lescent technology expected to be dismissed by 2030. The future communication systems in the rail sectors, such as Adaptable Communication Systems (ACS) and Future Railway Mobile Communication Systems (FRMCS), can manage different bearers as 4G/5G terrestrial technologies and satellites. In this environment, the new High Throughput Satellite (HTS) Low-Earth Orbit (LEO) constellations promise very interesting performances from data rate and coverage points of view. The paper analyzes the LEO constellations of Starlink and OneWeb using public data. The Rome-Florence railway line is considered for simulations. The results evidence the LEO satellite can provide interesting performance in terms of visibility, service connectivity, and traffic capacities (up to 1 Gbps). This feature enables the LEO to fully manage a high amount of data, especially in the railway scenarios of the next years when video data applications will be more present.
Background Spine disorders are becoming more prevalent in today’s ageing society. Motion abnormalities have been linked to the prevalence and recurrence of these disorders. Various protocols exist to measure thoracolumbar spine motion, but a standard multi-segmental approach is still missing. This study aims to systematically evaluate the literature on stereophotogrammetric motion analysis approaches to quantify thoracolumbar spine kinematics in terms of measurement reliability, suitability of protocols for clinical application and clinical significance of the resulting functional assessment. Methods Electronic databases (PubMed, Scopus and ScienceDirect) were searched until February 2022. Studies published in English, investigating the intersegmental kinematics of the thoracolumbar spine using stereophotogrammetric motion analysis were identified. All information relating to measurement reliability; measurement suitability and clinical significance was extracted from the studies identified. Results Seventy-four studies met the inclusion criteria. 33% of the studies reported on the repeatability of their measurement. In terms of suitability, only 35% of protocols were deemed suitable for clinical application. The spinous processes of C7, T3, T6, T12, L1, L3 and L5 were the most widely used landmarks. The spine segment definitions were, however, found to be inconsistent among studies. Activities of daily living were the main tasks performed. Comparable results between protocols are however still missing. Conclusion The literature to date offers various stereophotogrammetric protocols to quantify the multi-segmental motion of the thoracolumbar spine, without a standard guideline being followed. From a clinical point of view, the approaches are still limited. Further research is needed to define a precise motion analysis protocol in terms of segment definition and clinical relevance.
Background: SARS-CoV-2 is the cause of COVID-19 disease and responsible for a pandemic since the 2020. Multiple organ involvement has been described including cutaneous symptoms. Affection of skin appendages, however, seems to be under-reported except for COVID-toes. Material and methods: We performed a PUBMED research for “COVID-19” OR “SARS-CoV-2” AND “skin appendages”, “hair”, “nails”, and “skin glands” from January 2020 to April 2022. COVID toes were excluded since this symptom had extensively been discussed. The focus of this narrative review was laid on clinical presentation, association to the course of COVID-19 disease and treatment options. Results: Skin appendages can be affected by COVID-19 disease beyond COVID-toes, both by symptomatic and asymptomatic course. Telogen effluvium, androgenetic alopecia, and alopecia areata are the most common hair disorders in COVID-19 patients. Nails are less commonly affected by COVID-19 than hair. Splinter hemorrhages and leukonychia are the most frequent findings. While sebaceous glands seem to be uninvolved, SARS-CoV-2 spike proteins have been identified in eccrine sweat glands. Alopecia areata is often seen among asymptomatic COVID-19 patients while telogen effluvium is observed in symptomatic and asymptomatic patients. The half-moon sign on the nails could be a red flag for a more severe course of COVID-19. Treatment options are summarized. Conclusions: Skin appendages are not spared by COVID-19. Their knowledge will help to identify asymptomatic patients and patients at risk for a more severe course of the viral disease.
In the automotive environment, the need to increase the performance of materials requires extra engineering efforts. The possibility of developing new materials is strategically important. Indeed, alternative solutions in terms of material choice allow designers to optimise their projects and keep competitive production costs. Traditional quenched and tempered steels are usually used for highly stressed components, and possible alternatives could be important competitive opportunities. One possible substitute is using bainitic steels to exploit their economic advantages while maintaining acceptable mechanical performances. This paper explores the fatigue life behaviour of a new low-carbon bainitic steel for applications requiring case hardening treatment obtained by the nitriding process. A high-cycle fatigue (HCF) strength assessment is conducted through a test campaign to compare treated and untreated material. The improvement in fatigue strength is evaluated as well as the study of fracture surfaces, residual stress, and microhardness profiles to assess in detail the effectiveness of the nitriding process. It is found that the nitriding leads to an improvement in fatigue life but not as much as expected because of the low ductile behaviour of this steel, the high speed of stress application added, and the embrittlement of the nitriding treatment, as confirmed through fracture surface analysis.
The article compares two numerical approaches with different levels of details used to simulate curved masonry supports subjected to single lap shear tests. The masonry pillars were strengthened on the extrados and on the intrados with TRM materials comprising a 100 mm wide PBO textile embedded into 10 mm thick mortar layer. The numerical analyses were carried out using two approaches: a heterogeneous micro modelling FE approach and a spring model approach. The first modelling strategy was developed using the commercial software Abaqus and it involved the separate modelling of the constituent materials (i.e., bricks and mortar joints) as well as the simulation of the PBO textile and mortar matrix. The second approach was specifically developed to analyze curved supports and it comprised the adoption of equivalent normal and shear springs used to model the components of specimens (support, matrix and reinforcement) and, moreover, the interface between reinforcement and matrix. It is worth mentioning that this numerical investigation is part of an ongoing experimental and numerical work focused on analyzing the effect of curved brittle supports on the adherence properties of innovative strengthening materials (i.e., FRPs) and herein extended to the adoption of TRM composites. In absence of a comprehensive experimental characterization of the TRM constituent materials, the mechanical properties of the textile and mortar matrix were deduced from available data provided by the manufacturer. The numerical results are herein presented and critically compared in terms of global force-displacement curves and damage maps obtained at the end of the simulations.
The article presents the results obtained by using an analytical model herein slightly modified to study Near Surface Mounted (NSM) CFRP strengthening applied to brittle supports. To this scope, three sets of lab investigations comprising CFRPs applied to concrete and masonry pillars were considered. The lab investigations comprised testing of different CFRP strips characterized by various geometrical (cross section and bonding length) and mechanical parameters (elastic modulus). The interfacial tau-slip laws adopted in the analytical model were tuned using available experimental data and idealized bilinear laws proposed by the authors in the experimental campaigns. The reliability of the model was assessed by comparing the global force-slip curves obtained experimentally and analytically. Also, the analytical model allowed estimating the axial stress in the FRP strengthening, providing valuable information about the most probable failure mode (i.e., debonding or fiber failure). A global satisfactory agreement was found in all the set of tests studied with the proposed model. The analytical approach was able to accurately estimate the initial stiffness, peak load and post peak behavior.
Islands are a constrained environment due to their geographical peculiarities and their land use accounting for, especially in the touristic locations, strong variability during the year. Consequently, the variation of energy demand to be met by variable renewable energy leads to a complex issue. This study aims at investigating the PRISMI Plus approach applied to the Island of Procida to drive the transition towards low-carbon and high-renewable energy system. The toolkit involves the analysis of local renewable energy potential, their potential matching of the energy demand, and the prioritization of the technological solutions to achieve the decarbonization targets set by the energy planning strategies. Three scenarios are designed for 2030 considering low, middle, and high penetration of renewable energy in the systems, results indicate that the amount of power production in low, middle, and high penetration of renewable energy scenarios are 0.18, 14.5, 34.57 GWh/year, respectively. The environmental and landscape constraints lead to a restricted set of available solutions. The decarbonization of the electricity supply is foreseen thanks to the available local solar resources plus the electrification of other sectors, i.e. heating by using Heat Pumps and transport by using Electric Vehicles.
The AMADEUS collaboration is investigating the low-energy antikaon interactions with nucleons and nuclei, taking advantage of the lowmomentum antikaons beam provided by the DAΦNE collider at LNF-INFN. In this work a novel technique is outlined for the measurement of the hyperonnucleon two and three body scattering cross sections. The method consists in producing hyperons by antikaons atomic captures in light nuclear targets, and extrapolating the cross sections from the measurement of the yields of the corresponding elastic final state interactions of the hyperons. The feasibility of this kind of analyses is shown by comparison of calculated Σ⁰ production in ⁴He by K⁻ absorption on three nucleons, with a sample of K⁻¹²C absorption measured by AMADEUS in collaboration with KLOE. The feasibility of a dedicated high statistics measurement is discussed.
Worldwide about 550 hydrogen refueling stations (HRS) were in operation in 2021, of which 38% were in Europe. With their number expected to grow even further, the collection and investigation of real-world station operative data are fundamental to tracking their activity in terms of safety issues, performances, maintenance, reliability, and energy use. This paper analyses the parameters that characterize the refueling of 350 bar fuel cell buses (FCB) in five HRS within the 3Emotion project. The HRS are characterized by different refueling capacities, hydrogen supply schemes, storage volumes and pressures, and operational strategies. The FCB operate over various duty cycles circulating on urban and extra-urban routes. From data logs provided by the operators, a dataset of four years of operation has been created. The results show a similar hydrogen amount per fill distribution but quite different refueling times among the stations. The average daily mass per bus and refueling time are around 14.62 kg and 10.28 min. About 50% of the total amount of hydrogen is dispensed overnight, and the refueling events per bus are typically every 24 h. On average, the buses' time spent in service is 10 h per day. The hydrogen consumption is approximately 7 kg/100 km, a rather effective result reached by the technology. The station utilization is below 30% for all sites, the buses availability hardly exceeds 80%.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
634 members
Riccardo Tartaglia
  • Faculty of Science and Applied Technologies
Enrico Bocci
  • Engineering Department of Innovation & Information
Guido Vetere
  • Computer Engineering
via Antonio Gramsci 586, 06191030482, 00193, Roma, Italy