Recent PublicationsView all

  • [Show abstract] [Hide abstract]
    ABSTRACT: Polarisation of tissues in the plane of an epithelium is fundamental for both animal morphogenesis and organ function. A new paper describes a role for mechanical cues in determining how such polarity is aligned with the body axes.
    No preview · Article · Nov 2015 · Current biology: CB
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Mongolian gerbil, Meriones unguiculatus, has been widely employed as a model for studies of the inner ear. In spite of its established use for auditory research, no robust protocols to induce ototoxic hair cell damage have been developed for this species. In this paper, we demonstrate the development of an aminoglycoside-induced model of hair cell loss, using kanamycin potentiated by the loop diuretic furosemide. Interestingly, we show that the gerbil is relatively insensitive to gentamicin compared to kanamycin, and that bumetanide is ineffective in potentiating the ototoxicity of the drug. We also examine the pathology of the spiral ganglion after chronic, long-term hair cell damage. Remarkably, there is little or no neuronal loss following the ototoxic insult, even at 8 months post-damage. This is similar to the situation often seen in the human, where functioning neurons can persist even decades after hair cell loss, contrasting with the rapid, secondary degeneration found in rats, mice and other small mammals. We propose that the combination of these factors makes the gerbil a good model for ototoxic damage by induced hair cell loss. Copyright © 2015. Published by Elsevier B.V.
    No preview · Article · Mar 2015 · Hearing research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Colors distinguishable with trichromatic vision can be defined by a 3D color space, such as red-green-blue or hue-saturation-lightness (HSL) space, but it remains unclear how the cortex represents colors along these dimensions. Using intrinsic optical imaging and electrophysiology, and systematically choosing color stimuli from HSL coordinates, we examined how perceptual colors are mapped in visual area V4 in behaving macaques. We show that any color activates 1-4 separate cortical patches within "globs," millimeter-sized color-preferring modules. Most patches belong to different hue or lightness clusters, in which sequential representations follow the color order in HSL space. Some patches overlap greatly with those of related colors, forming stacks, possibly representing invariable features, whereas few seem positioned irregularly. However, for any color, saturation increases the activity of all its patches. These results reveal how the color map in V4 is organized along the framework of the perceptual HSL space, whereupon different multipatch activity patterns represent different colors. We propose that such distributed and combinatorial representations may expand the encodable color space of small cortical maps and facilitate binding color information to other image features.
    Full-text · Article · Jan 2014 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.