382
2,091.72
5.48
772

Recent PublicationsView all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fields of metallic nanoparticle study and synthetic biology have a great deal to offer one another. Metallic nanoparticles as a class of material have many useful properties. Their small size allows for more points of contact than would be the case with a similar bulk compound, making nanoparticles excellent candidates for catalysts or for when increased levels of binding are required. Some nanoparticles have unique optical qualities, making them well suited as sensors, while others display para-magnetism, useful in medical imaging, especially by Magnetic Resonance Imaging (MRI). Many of these metallic nanoparticles could be used in creating tools for synthetic biology, and conversely the use of synthetic biology could itself be utilised to create nanoparticle tools. Examples given here include the potential use of quantum dots (QDs) and gold nanoparticles as sensing mechanisms in synthetic biology, as well as ways of using synthetic biology to create ways of sensing metal nanoparticles based on current methods of detecting metals and metalloids such as arsenate. There are a number of organisms which are able to produce a range of metallic nanoparticles naturally, such as species of the fungus Phoma which produces anti-microbial silver nanoparticles. The Biological synthesis of nanoparticles may have many advantages over their more traditional industrial synthesis. If the proteins involved in biological nanoparticle synthesis can be put into a suitable bacterial chassis then they might be manipulated and the pathways engineered in order to produce more valuable nanoparticles.
    Full-text · Article · Dec 2014 · New Biotechnology

  • No preview · Article · Jul 2014 · New Biotechnology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thymic involution is central to the decline in immune system function that occurs with age. By regenerating the thymus, it may therefore be possible to improve the ability of the aged immune system to respond to novel antigens. Recently, diminished expression of the thymic epithelial cell (TEC)-specific transcription factor Forkhead box N1 (FOXN1) has been implicated as a component of the mechanism regulating age-related involution. The effects of upregulating FOXN1 function in the aged thymus are, however, unknown. Here, we show that forced, TEC-specific upregulation of FOXN1 in the fully involuted thymus of aged mice results in robust thymus regeneration characterized by increased thymopoiesis and increased naive T cell output. We demonstrate that the regenerated organ closely resembles the juvenile thymus in terms of architecture and gene expression profile, and further show that this FOXN1-mediated regeneration stems from an enlarged TEC compartment, rebuilt from progenitor TECs. Collectively, our data establish that upregulation of a single transcription factor can substantially reverse age-related thymic involution, identifying FOXN1 as a specific target for improving thymus function and, thus, immune competence in patients. More widely, they demonstrate that organ regeneration in an aged mammal can be directed by manipulation of a single transcription factor, providing a provocative paradigm that may be of broad impact for regenerative biology.
    Full-text · Article · Apr 2014 · Development
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.