TZW: DVGW-Technologiezentrum Wasser (German Water Centre)
Recent publications
Background Safe and clean drinking water is essential for human life. Persistent, mobile and toxic (PMT) substances and/or very persistent and very mobile (vPvM) substances are an important group of substances for which additional measures to protect water resources may be needed to avoid negative environmental and human health effects. PMT/vPvM substances do not sufficiently biodegrade in the environment, they can travel long distances with water and are toxic (those that are PMT substances) to the environment and/or human health. PMT/vPvM substance research and regulation is arguably in its infancy and in order to get in control of these substances the following (non-exhaustive list of) knowledge gaps should to be addressed: environmental occurrence; the suitability of currently available analytical methods; the effectiveness and availability of treatment technologies; the ability of regional governance and industrial stewardship to contribute to safe drinking water while supporting innovation; the ways in which policies and regulations can be used most effectively to govern these substances; and, the identification of safe and sustainable alternatives. Methods The work is the outcome of the third PMT workshop, held in March 2021, that brought together diverse scientists, regulators, NGOs, and representatives from the water sector and the chemical sector, all concerned with protecting the quality of our water resources. The online workshop was attended by over 700 people. The knowledge gaps above were discussed in the presentations given and the attendees were invited to provide their opinions about knowledge gaps related to PMT/vPvM substance research and regulation. Results Strategies to closing the knowledge, technical and practical gaps to get in control of PMT/vPvM substances can be rooted in the Chemicals Strategy for Sustainability Towards a Toxic Free Environment from the European Commission, as well as recent advances in the research and industrial stewardship. Key to closing these gaps are: (i) advancing remediation and removal strategies for PMT/vPvM substances that are already in the environment, however this is not an effective long-term strategy; (ii) clear and harmonized definitions of PMT/vPvM substances across diverse European and international legislations; (iii) ensuring wider availability of analytical methods and reference standards; (iv) addressing data gaps related to persistence, mobility and toxicity of chemical substances, particularly transformation products and those within complex substance mixtures; and (v) advancing monitoring and risk assessment tools for stewardship and regulatory compliance. The two most effective ways to get in control were identified to be source control through risk governance efforts, and enhancing market incentives for alternatives to PMT/vPvM substances by using safe and sustainable by design strategies.
Over the past decades, thousands of different per- and polyfluoroalkyl substances (PFASs) have been produced and applied in various industrial processes and consumer products. Their structural diversity has reached a level that cannot be covered by classical target screening methods for individual compounds. Large-scale contaminations of soil, however, require the need to adapt new analytical methods that can describe a contamination more comprehensively. While sum parameters such as the total oxidisable precursor (TOP) assay have been developed in the past years, they are not yet applied in the regulatory context of PFASs. In this commentary, we provide an overview on different approaches of the TOP assay as well as its benefits and disadvantages to other sum parameters for PFASs in soil samples. Furthermore, we elaborate its opportunities and its challenges that need to be tackled to implement the TOP assay as a regulatory tool. With several different approaches of the TOP assay being available, a sound and standardised method needs to be agreed upon and more research is necessary to better describe the method. Although the complexity of PFAS contaminations in soil cannot be fully covered by any analytical method alone, the TOP assay can provide valuable data to detect and characterise soil contamination as an inventory for subsequent remediation measures. Therefore, the TOP assay should be implemented as a useful tool both in research and in the regulatory context of PFASs.
Treated wastewater is becoming increasingly important as a usable water resource, especially in areas of extreme water scarcity. The alternative water production and transfer strategies proposed in the SALAM-initiative to address the water deficit problem in the Middle East by providing fresh water from desalination plants show that significant amounts of additional wastewater would be generated in 2050. In this study, the potential for reuse of treated wastewater in the Lower Jordan Valley is investigated considering three reuse variants. The results show that there is a significant demand for irrigation purposes in agriculture, but also aquifer storage via managed aquifer recharge, or rehabilitation of Jordan River floodplains, are promising reuse options. The study demonstrates a combined approach of hydrogeological and land use analyses to quantify the different wastewater reuse concepts and provides a basis for further research and implementation plans for sustainable combined wastewater-groundwater management in the Lower Jordan Valley in Jordan.
Persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances have been recognized as a threat to both the aquatic environment and to drinking water resources. These substances are currently prioritized for regulatory action by the European Commission, whereby a proposal for the inclusion of hazard classes for PMT and vPvM substances has been put forward. Comprehensive monitoring data for many PMT/vPvM substances in drinking water sources are scarce. Herein, we analyze 34 PMT/vPvM substances in 46 surface water, groundwater, bank filtrate, and raw water samples taken throughout Germany. Results of the sampling campaign demonstrated that known PMT/vPvM substances such as 1H-benzotriazole, melamine, cyanuric acid, and 1,4-dioxane are responsible for substantial contamination in the sources of German drinking water. In addition, the results revealed the widespread presence of the emerging substances 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and diphenylguanidine (DPG). A correlation analysis showed a pronounced co-occurrence of PMT/vPvM substances associated predominantly with consumer or professional uses and also demonstrated an inhomogeneous co-occurrence for substances associated mainly with industrial use. These data were used to test the hypothesis that most PMT/vPvM substances pass bank filtration without significant concentration reduction, which is one of the main reasons for introducing PMT/vPvM as a hazard class within Europe.
Certain strains of coliform bacteria have been shown to proliferate in the oligotrophic water of drinking water reservoirs and lakes, reaching values above 10 ⁴ per 100 mL. Such high concentrations challenge drinking water treatment, and occasionally the respective coliform bacteria have been detected in the treated drinking water.
Recent studies aiming at a fluorine mass balance analysis in sediments combined the determination of extractable organic fluorine (EOF) with target analysis. They reported high fractions of unidentified organic fluorine (UOF) compounds, as the target analysis covers only a limited number of per- and polyfluoroalkyl substances (PFAS). For this reason, in this study, a comprehensive approach was used combining target analysis with an extended PFAS spectrum, the EOF and a modified total oxidisable precursor (TOP) assay, which includes trifluoroacetic acid, to determine the PFAS contamination in sediments (n=41) and suspended solids (n=1) from water bodies in Northern Germany (Lower Saxony). PFAS are ubiquitous in the sediments (detected in 83% of the samples). Perfluorinated carboxylic acids (PFCAs) were found in 64% of the samples; perfluorinated sulfonic acids (PFSAs) were detected less frequently (21%), with the highest concentration observed for perfluorooctanesulfonic acid (PFOS). Levels of precursors and substitutes were lower. Applying the TOP assay resulted in an increase in PFCAs in 43% of the samples analysed. In most cases, target analysis and the TOP assay could not account for the EOF concentrations measured. However, as the fraction of UOF decreased significantly, the application of the TOP assay in fluorine mass balance analysis proved to be an important tool in characterising the PFAS contamination of riverine sediments.
The variety of applied antibiotics in animal and human medicine results in the release, development, and spread of relevant numbers of antibiotic resistance genes (ARGs) in the environment. The majority of ARGs are present in intracellular forms (in bacteria). Neglected aspects are extracellular variants of ARGs (eARGs) and their fragments, which have been detected in surface-water samples and sediments. The stability of eARGs is expected to be low; however, binding to particulate matter is likely to improve their stability and also affect their transport and dissemination behavior. Few studies have investigated DNA particle interactions, mostly via indirect characterization of adduct formation in model systems but not in real environmental matrices. Therefore, our study aims at a novel approach for direct characterization of desoxyribonucleic acid (DNA) particle interactions using both cascade filtration and field-flow fractionation. Cascade filtration with quantitative polymerase chain reaction (qPCR) detection indicated retention of ARGs on filters with much larger pore sizes supporting the hypothesis of ARG-particle interactions. However, artifacts from membrane clogging or DNA–membrane interaction cannot be excluded. Consequently, asymmetric flow field-flow fractionation was investigated as an alternative separation technique with the advantage of particle separation in a thin channel, reducing the risk of artifacts. The key method parameters, membrane composition, molecular weight cut off, and carrier composition, were systematically investigated using a calf-thymus DNA-spiked surface-water sample as a model. The results clearly showed a shift in the elution time of clay particles suggesting the presence of DNA–clay adducts. Multi-element detection by inductively coupled plasma mass spectrometry (ICP-MS) enabled monitoring of clay via the Al, Fe, and Si signals and DNA via the P signal. Matching peak profiles for the new fraction in the fractograms of the ARG and DNA-spiked water sample support adduct formation. Further evidence was provided by a novel post-channel filtration approach for the separation of free DNA from DNA–clay adducts.
Per- and polyfluoroalkyl substances (PFASs) have been a focal point of environmental chemistry and chemical regulation in recent years, culminating in a shift from individual PFAS regulation toward a PFAS group regulatory approach in Europe. PFASs are a highly diverse group of substances, and knowledge about this group is still scarce beyond the well-studied, legacy long-chain, and short-chain perfluorocarboxylates (PFCAs) and perfluorosulfonates (PFSAs). Herein, quantitative and semiquantitative data for 43 legacy short-chain and ultra-short-chain PFASs (≤2 perfluorocarbon atoms for PFCAs, ≤3 for PFSAs and other PFASs) in 46 water samples collected from 13 different sources of German drinking water are presented. The PFASs considered include novel compounds like hexafluoroisopropanol, bis(trifluoromethylsulfonyl)imide, and tris(pentafluoroethyl)trifluorophosphate. The ultra-short-chain PFASs trifluoroacetate, perfluoropropanoate, and trifluoromethanesulfonate were ubiquitous and present at the highest concentrations (98% of sum target PFAS concentrations). “PFAS total” parameters like the adsorbable organic fluorine (AOF) and total oxidizable precursor (TOP) assay were found to provide only an incomplete picture of PFAS contamination in these water samples by not capturing these highly prevalent ultra-short-chain PFASs. These ultra-short-chain PFASs represent a major challenge for drinking water production and show that regulation in the form of preventive measures is required to manage them.
Trifluoroacetate (TFA) is a highly mobile and persistent compound that occurs ubiquitously in the environment. Results from previous studies suggested an increase in the atmospheric deposition of TFA in the Northern Hemisphere starting in the 1990s. Due to its physicochemical properties, TFA can be efficiently taken up and accumulated by vascular plants. Consequently, plants could serve as a biomonitoring tool to evaluate the presence of TFA in the terrestrial environment. This is the first study which describes the concentrations and temporal trends of TFA in biota by analyzing archived leaf samples of various tree species from the German Environmental Specimen Bank (observation period: 1989–2020). Samples from different locations of the same species were each in a similar concentration range. The highest concentrations (up to ∼1000 μg/kg dry weight) were found in Lombardy poplar (Populus nigra ‘Italica’) leaves. A statistically significant positive trend in the TFA concentration within the study period was found for most species/sites, which is likely the result of both bioaccumulation as well as increasing emissions of gaseous TFA precursors over the last three decades. These results contribute to the current discussion on the regulation of per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health.
Water meters of different types and sizes are used to monitor and bill the water supply. Although the water is of drinking water quality, its chemo-physical properties often adversely affect the measuring behaviour of a meter after a while. There is thus the risk that they no longer meet legal requirements and may no longer be used. In this paper a test regime with a focus on pH, total hardness and particle load is presented which allows water meters to be tested closer to their operating conditions prior to placing them on the market. The regime goes beyond the conventional continuous durability test as described in OIML R49:2013(E) and ISO 4064:2014. The feasibility and reliability of the test regime has been demonstrated through implementation at different facilities. In the study, the measurement performance of water meters of various types and from different manufacturers was also investigated. A heterogeneous spread of measurement errors was found for both, water meters in mint conditions and those which were exposed to a defined water quality. Furthermore, compared to the conventional continuous durability test, the test regime developed in the study generally leads to stronger changes in the measurement error of the water meters. HIGHLIGHTS Test derived to assess performance of water meters closer to their operating conditions.; Mixing recipes for test waters of different quality developed to ensure comparability.; Error curves of the water meters depend on the combination of meter type and manufacturer.; Trend to less effects on electronic water meters.; Comparison carried out to tests with tap water tendency to larger water quality-related effects in the error curves.;
We report the draft genome sequences of Buttiauxella spp. strains that were isolated from water and gastropods. Three isolates show fluorescence in the Colilert system, indicating unusual β-d-glucuronidase activity, and phylogenetic analyses suggest that they represent a novel species. Another strain, without β-d-glucuronidase activity, was assigned to the species Buttiauxella ferragutiae.
Identification and location of contamination sources is crucial for water resource protection — especially in karst aquifers which provide 25% of the world´s population with water but are highly vulnerable to contamination. Transport-based source tracking is proposed and verified here as a complementary approach to microbial and chemical source tracking in karst aquifers for identifying and locating such sources of contamination and for avoiding ambiguities that might arise from using one method alone. The transport distance is inversely modelled from contaminant breakthrough curves (BTC), based on analytical solutions of the 1D two-region non-equilibrium advection dispersion equation using GNU Octave. Besides the BTC, the model requires reliable estimates of transport velocity and input time. The model is shown to be robust, allows scripted based, automated 2D sensitivity analyses (interplay of two parameters), and can be favorable when distributed numerical models are inappropriate due to insufficient data. Sensitivity analyses illustrate that the model is highly sensitive to the input time, the flow velocity, and the fraction of the mobile fluid region. A conclusive verification approach was performed by applying the method to synthetic data, tracer tests, and event-based field data. Transport distances were correctly modelled for a set of artificial tracer tests using a discharge-velocity relationship that could be established for the respective karst catchment. For the first time such an approach was shown to be applicable to estimate the maximum distance to the contamination source for coliform bacteria in karst spring water combined with microbial source tracking. However, prediction intervals for the transport distance can be large even in well-studied karst catchments mainly related to uncertainties in the flow velocity and the input time. Using a maximum transport distance is proposed to account for less permeable, “slower” pathways. In general, transport-based source tracking might be used wherever transport can be described by the 1D two-region non- equilibrium model, e.g. rivers and fractured or porous aquifers.
rationale of the study Three steroidal estrogens, 17α-ethinylestradiol (EE2), 17β-estradiol (E2), estrone (E1), and the non-steroidal anti-inflammatory drug (NSAID), diclofenac have been included in the first Watch List of the Water Framework Directive (WFD, EU Directive 2000/60/EC, EU Implementing Decision 2015/495). This triggered the need for more EU-wide surface water monitoring data on these micropollutants, before they can be considered for inclusion in the list of priority substances regularly monitored in aquatic ecosystems. The revision of the priority substance list of the WFD offers the opportunity to incorporate more holistic bioanalytical approaches, such as effect-based monitoring, alongside single substance chemical monitoring. Effect-based methods (EBMs) are able to measure total biological activities (e.g., estrogenic activity or cyxlooxygenase [COX]-inhibition) of specific group of substances (such as estrogens and NSAIDs) in the aquatic environment at low concentrations (pg/L). This makes them potential tools for a cost-effective and ecotoxicologically comprehensive water quality assessment. In parallel, the use of such methods could build a bridge from chemical status assessments towards ecological status assessments by adressing mixture effects for relevant modes of action. Our study aimed to assess the suitability of implementing EBMs in the WFD, by conducting a large-scale sampling and analysis campaign of more than 70 surface waters across Europe. This resulted in the generation of high-quality chemical and effect-based monitoring data for the selected Watch List substances. Overall, water samples contained low estrogenicity (0.01–1.3 ng E2-Equivalent/L) and a range of COX-inhibition activity similar to previously reported levels (12–1600 ng Diclofenac-Equivalent/L). Comparison between effect-based and conventional analytical chemical methods showed that the chemical analytical approach for steroidal estrogens resulted in more (76%) non-quantifiable data, i.e., concentrations were below detection limits, compared to the EBMs (28%). These results demonstrate the excellent and sensitive screening capability of EBMs.
Riverbank filtration is an established and quantitatively important approach to mine high-quality raw water for drinking water production. Bacterial fecal indicators are routinely used to monitor hygienic raw water quality, however, their applicability in viral contamination has been questioned repeatedly. Additionally, there are concerns that the increasing frequency and intensity of meteorological and hydrological events, i.e., heavy precipitation and droughts leading to high and low river levels, may impair riverbank filtration performance. In this study, we explored the removal of adenovirus compared with several commonly used bacterial and viral water quality indicators during different river levels. In a seasonal study, water from the Rhine River, a series of groundwater monitoring wells, and a production well were regularly collected and analyzed for adenovirus, coliphages, E. coli, C. perfringens, coliform bacteria, the total number of prokaryotic cells (TCC), and the number of virus-like particles (TVPC) using molecular and cultivation-based assays. Additionally, basic physico-chemical parameters, including temperature, pH, dissolved organic carbon, and nutrients, were measured. The highest log10 reduction during the >72 m of riverbank filtration from the river channel to the production well was observed for coliforms (>3.7 log10), followed by E. coli (>3.4 log10), somatic coliphages (>3.1 log10), C. perfringens (>2.5 log10), and F+ coliphages (>2.1 log10) at high river levels. Adenovirus decreased by 1.6–3.1 log units in the first monitoring well (>32 m) and was not detected in further distant wells. The highest removal efficiency of adenovirus and most other viral and bacterial fecal indicators was achieved during high river levels, which were characterized by increased numbers of pathogens and indicators. During low river levels, coliforms and C. perfringens were occasionally present in raw water at the production well. Adenovirus, quantified via droplet digital PCR, correlated with E. coli, somatic coliphages, TCC, TVPC, pH, and DOC at high river levels. At low river levels, adenoviruses correlated with coliforms, TVPC, pH, and water travel time. We conclude that although standard fecal indicators are insufficient for assessing hygienic raw water quality, a combination of E. coli, coliforms and somatic coliphages can assess riverbank filtration performance in adenovirus removal. Furthermore, effects of extreme hydrological events should be studied on an event-to-event basis at high spatial and temporal resolutions. Finally, there is an urgent need for a lower limit of detection for pathogenic viruses in natural waters. Preconcentration of viral particles from larger water volumes (>100 L) constitutes a promising strategy.
In recent months, wastewater-based epidemiology (WBE) has been shown to be an important tool for early detection of SARS-CoV-2 circulation in the population. In this study, a detection methodology for SARS-CoV-2 RNA (wildtype and variants of concern) in wastewater was developed based on the detection of different target genes (E and ORF1ab) by polyethylene glycol (PEG) precipitation and digital droplet PCR. This methodology was used to determine the SARS-CoV-2 concentration and the proportion of N501Y mutation in raw sewage of the wastewater treatment plant of the city of Karlsruhe in south-western Germany over a period of 1 year (June 2020 to July 2021). Comparison of SARS-CoV-2 concentrations with reported COVID-19 cases in the catchment area showed a significant correlation. As the clinical SARS-CoV-2 official case report chain takes time, viral RNA titre trends appeared more than 12 days earlier than clinical data, demonstrating the potential of wastewater-based epidemiology as an early warning system. Parallel PCR analysis using seven primer and probe systems revealed similar gene copy numbers with E, ORF, RdRP2 and NSP9 assays. RdPP1 and NSP3 generally resulted in lower copy numbers, and in particular for N1 there was low correlation with the other assays. The occurrence of the N501Y mutation in the wastewater of Karlsruhe was consistent with the occurrence of the alpha-variant (B.1.1.7) in the corresponding individual clinical tests. In batch experiments SARS-CoV-2 RNA was stable for several days under anaerobic conditions, but the copy numbers decreased rapidly in the presence of dissolved oxygen. Overall, this study shows that wastewater-based epidemiology is a sensitive and robust approach to detect trends in the spread of SARS-CoV-2 at an early stage, contributing to successful pandemic management.
Soft acidic waters are often treated for drinking water purposes by using limestone filters to attain chemical equilibrium. The present study investigated the process parameters of a relatively new process combination in which powdered calcium carbonate (CaCO3) was added prior to an ultrafiltration (UF). In order to reach the targeted pH value (≥7.8), dosing concentration, type of material and retention time were evaluated in pilot-scale experiments. The deacidification followed the same kinetics as for limestone filtration and yielded similar filtrate characteristics with dosing concentrations of 20 and 40 g/L CaCO3. No significant increase in transmembrane pressure was observed during the operation of a pilot-scale UF module at low flux (34 L m−2 h−1). Critical flux was determined in a laboratory scale to evaluate the potential impact of CaCO3 particles on the UF operation. Stepping-flux experiments revealed the presence of fouling only at high-dosing concentrations, resulting in a critical flux of 55 L m−2 h−1. At a higher flux, a CaCO3-fouling layer was formed, which decreased the membrane's permeability by 20% over 5 h. Considering that effective air-enhanced backwash and acidic chemical cleanings will be implemented in large-scale applications, the investigated process combination promises to be an appropriate treatment technology for turbid and soft acidic waters. HIGHLIGHTS Dosing of powdered CaCO3 as a deacidification alternative followed by ultrafiltration.; Absence of CaCO3 fouling at a low-flux UF operation with air-enhanced backwash.; Determination of critical flux for the filtration of CaCO3 suspensions.; Presence of irreversible fouling at high CaCO3 concentration and operating flux.;
Microplastics (MP) as emerging persistent pollutants were found in raw and drinking water worldwide. Since different methods were used, there is an urgent need for harmonized protocols for sampling, sample preparation, and analysis. In this study, a holistic and validated analytical workflow for MP analysis in aqueous matrices down to 5 μm is presented. For sampling of several cubic meters of water, an easily portable filter cascade unit with different pore sizes (100–20–5 μm) was developed and successfully applied for the sampling of three processed drinking waters, two tap waters and one groundwater. The size distribution and polymer types of MP were determined using a two-step semi-automated Raman microspectroscopy analysis. For quality control, comprehensive process blanks were considered at all times and a recovery test yielded an overall recovery of 81%. The average concentration of identified MP was 66 ± 76 MP/m3 ranging from 1 MP/m3 to 197 MP/m3. All found concentrations were below the limit of quantitation (LOQ) of 1880 MP/m3. The majority consisted of PE (86% ± 111%) while comparatively low numbers of PET (10% ± 25%), PP (3% ± 6%), and PA (1% ± 4%) were found. 79% of all particles were smaller than 20 μm. In summary, this study presents the application of a workflow for sampling and analysis of MP down to 5 μm with first results of no significant contamination in drinking water and groundwater.
Zusammenfassung Hintergrund Eine infektiologische Krisensituation wie die SARS-CoV-2-Pandemie stellte die Verwaltungsstrukturen des öffentlichen Gesundheitsdienstes vor erhebliche Herausforderungen, die abhängig von der personellen und digitalen Ausstattung in einer unterschiedlichen Effizienz des Ausbruchsmanagements resultierten. Die Einbindung von innovativen Instrumenten der Pandemiebekämpfung, wie Clusternachverfolgung, Risikogruppentestungen oder wie z. B. die von der EU-Kommission empfohlene Einbindung des Abwassermonitorings, wurde dadurch maßgeblich erschwert. Ziel In dieser Fallstudie im Berchtesgadener Land stellen wir die Einbindung eines flächendeckenden georeferenzierten Abwassermonitorings vor, das seit Nov. 2020 95 % der gesamten Bevölkerung erfasst. Methoden Für eine flächendeckende Erfassung erfolgte die Probennahme an 2 Tagen pro Woche an 9 kommunalen Kläranlagen und zusätzlich direkt aus der Kanalisation an 3 Standorten. Die Abwasserproben wurden direkt mittels Zentrifugation zur Feststoffabtrennung aufbereitet und über eine digitale Droplet Polymerase-Kettenreaktion (PCR) 4 spezifische Gene von SARS-CoV‑2 erfasst und quantifiziert. Ergebnisse Die Einbindung des georeferenzierten Abwassermonitorings war erfolgreich. Die Abwasserbefunde werden für jede Gemeinde mit den Inzidenzen pro 100.000 Einwohnern dargestellt. Änderungen im Infektionsgeschehen sind 10 Tage vor den offiziellen Fallzahlen mit einer Sensitivität von ca. 20 pro 100.000 Einwohner erkennbar. Diskussion Die Integration dieser innovativen Ansätze in eine umfassende Lageführung mittels eines digitalen Dashboards und der Etablierung eines Frühwarnsystems anhand eines quantitativen Abwassermonitorings resultierte im Landkreis Berchtesgadener Land in einem sehr effizienten, proaktiven Krisenmanagement. Dieses kann als Blaupause für andere Kommunen in Deutschland dienen.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
38 members
Karsten Nödler
  • Water chemistry research
Michael Hügler
  • Water microbiology
Frank Thomas Lange
  • Water chemistry; Section Water chemistry research
Oliver Happel
  • Department of Water Quality
Beate Hambsch
  • Department of Microbiology
Karlsruher Straße 84, 76139, Karlsruhe, Germany
+49 721 9678-0