Stazione Zoologica Anton Dohrn
Recent publications
The accurate delimitation of species boundaries in nonbilaterian marine taxa is notoriously difficult, with consequences for many studies in ecology and evolution. Anthozoans are a diverse group of key structural organisms worldwide, but the lack of reliable morphological characters and informative genetic markers hampers our ability to understand species diversification. We investigated population differentiation and species limits in Atlantic (Iberian Peninsula) and Mediterranean lineages of the octocoral genus Paramuricea previously identified as P. clavata. We used a diverse set of molecular markers (microsatellites, RNA-seq derived single-copy orthologues [SCO] and mt-mutS [mitochondrial barcode]) at 49 locations. Clear segregation of Atlantic and Mediterranean lineages was found with all markers. Species-tree estimations based on SCO strongly supported these two clades as distinct, recently diverged sister species with incomplete lineage sorting, P. cf. grayi and P. clavata, respectively. Furthermore, a second putative (or ongoing) speciation event was detected in the Atlantic between two P. cf. grayi color morphotypes (yellow and purple) using SCO and supported by microsatellites. While segregating P. cf. grayi lineages showed considerable geographic structure, dominating circalittoral communities in southern (yellow) and western (purple) Portugal, their occurrence in sympatry at some localities suggests a degree of reproductive isolation. Overall, our results show that previous molecular and morphological studies have underestimated species diversity in Paramuricea occurring in the Iberian Peninsula, which has important implications for conservation planning. Finally, our findings validate the usefulness of phylotranscriptomics for resolving evolutionary relationships in octocorals.
Ocean currents are a key driver of plankton dispersal across the oceanic basins. However, species specific temperature constraints may limit the plankton dispersal. We propose a methodology to estimate the connectivity pathways and timescales for planktonspecies with given constraints on temperature tolerances, by combining Lagrangian modeling with network theory. We demonstrate application of two types of temperature constraints: thermal niche and adaptation potential and compare it to thesurface water connectivity between sample stations in the Atlantic Ocean. We find that non-constrained passive particles representative of a plankton species can connect all the stations within three years at the surface with pathways mostly along the major ocean currents. However, under thermal constraints, only a subset of stations can establish connectivity. Connectivity time increases marginally under these constraints, suggesting that plankton can keep within their favorable thermal conditions by advecting via slightly longer paths. Effect of advection depth on connectivity is observed to be sensitive to the width of the thermal constraints, along with decreasing flow speeds with depth and possible changes in pathways.
Coral reefs in the northern Red Sea experience strong seasonality. This affects reef carbon (C) cycling, but ecosystem-wide quantification of C fluxes in such reefs is limited. This study quantified seasonal reef community C fluxes with incubations. Resulting data were then incorporated into seasonal linear inverse models (LIM). For spring, additional sponge incubation results allowed for unique assessment of the contribution of sponges to C cycling. The coral reef ecosystem was heterotrophic throughout all seasons as gross community primary production (GPP; 136–200, range of seasonal means in mmol C m ⁻² d ⁻¹ ) was less than community respiration (R; 192–279), and balanced by import of organic carbon (52–100), 88‒92% of which being dissolved organic carbon (DOC). Hard coral GPP (74–110) and R (100–137), as well as pelagic bacteria DOC uptake (58–101) and R (42–86), were the largest C fluxes across seasons. The ecosystem was least heterotrophic in spring (highest irradiance) (GPP:R 0.81), but most heterotrophic in summer and fall with higher water temperatures (0.68 and 0.60, respectively). Adding the sponge community to the model increased community R (247 ± 8 without to 353 ± 13 with sponges (mean ± SD)). Sponges balanced this demand primarily with DOC uptake (105 ± 6, 97% by cryptic sponges). This rate is comparable to the uptake of DOC by pelagic bacteria (104 ± 5) placing the cryptic sponges among the dominant C cycling groups in the reef.
Sea ice is a key habitat in the high latitude Southern Ocean and is predicted to change in its extent, thickness and duration in coming decades. The sea-ice cover is instrumental in mediating ocean–atmosphere exchanges and provides an important substrate for organisms from microbes and algae to predators. Antarctic krill, Euphausia superba, is reliant on sea ice during key phases of its life cycle, particularly during the larval stages, for food and refuge from their predators, while other small grazers, including copepods and amphipods, either live in the brine channel system or find food and shelter at the ice-water interface and in gaps between rafted ice blocks. Fish, such as the Antarctic silverfish Pleuragramma antarcticum, use platelet ice (loosely-formed frazil crystals) as an essential hatching and nursery ground. In this paper, we apply the framework of the Marine Ecosystem Assessment for the Southern Ocean (MEASO) to review current knowledge about relationships between sea ice and associated primary production and secondary consumers, their status and the drivers of sea-ice change in this ocean. We then use qualitative network modelling to explore possible responses of lower trophic level sea-ice biota to different perturbations, including warming air and ocean temperatures, increased storminess and reduced annual sea-ice duration. This modelling shows that pelagic algae, copepods, krill and fish are likely to decrease in response to warming temperatures and reduced sea-ice duration, while salp populations will likely increase under conditions of reduced sea-ice duration and increased number of days of >0°C. Differences in responses to these pressures between the five MEASO sectors were also explored. Greater impacts of environmental pressures on ice-related biota occurring presently were found for the West and East Pacific sectors (notably the Ross Sea and western Antarctic Peninsula), with likely flow-on effects to the wider ecosystem. All sectors are expected to be impacted over coming decades. Finally, we highlight priorities for future sea ice biological research to address knowledge gaps in this field.
The continuous increase of CO2 emissions in the atmosphere due to anthropogenic activities is one of the most important factors that contribute to Climate Change and generates the phenomenon known as Ocean Acidification (OA). Research conducted at the CO2 vents of Castello Aragonese (Ischia, Italy), which represents a natural laboratory for the study of OA, demonstrated that some organisms, such as polychaetes, thrive under acidified conditions through different adaptation mechanisms. Some functional and ecological traits promoting tolerance to acidification in these organisms have been identified, while the molecular and physiological mechanisms underlying acclimatisation or genetic adaptation are still largely unknown. Therefore, in this study we investigated epigenetic traits, as histone acetylation and methylation, in Platynereis spp. individuals coming from the Castello vent, and from a nearby control site, in two different periods of the year (November-June). Untargeted metabolomics analysis was also carried out in specimens from the two sites. We found a different profile of acetylation of H2B histone in the control site compared to the vent as a function of the sampling period. Metabolomic analysis showed clear separation in the pattern of metabolites in polychaetes from the control site with respect to those from the Castello vent. Specifically, a significant reduction of lipid/sterols and nucleosides was measured in polychaetes from the vent. Overall results contribute to better understand the potential metabolic pathways involved in the tolerance to OA.
DNA methylation (DNAm) has been intensively studied in terrestrial plants in response to environmental changes, but its dynamic changes in a temporal scale remain unexplored in marine plants. The seagrass Posidonia oceanica ranks among the slowest-growing and longest-living plants on Earth, and is particularly vulnerable to sea warming and local anthropogenic pressures. Here, we analysed the dynamics of DNAm changes in plants collected from coastal areas differentially impacted by eutrophication (i.e. oligotrophic, Ol; eutrophic, Eu) and exposed to abiotic stressors (nutrients, temperature increase and their combination). Levels of global DNAm (% 5-mC) and the expression of key genes involved in DNAm were assessed after one, two and five weeks of exposure. Results revealed a clear differentiation between plants, depending on environmental stimuli, time of exposure and plants' origin. % 5-mC levels were higher during the initial stress exposure especially in Ol plants, which upregulated almost all genes involved in DNAm. Contrarily, Eu plants showed lower expression levels, which increased under chronic exposure to stressors, particularly to temperature. These findings show that DNAm is dynamic in P. oceanica during stress exposure and underlined that environmental epigenetic variations could be implicated in the regulation of acclimation and phenotypic differences depending on local conditions.
The search for novel sources of nutrients is among the basic goals for achievement of sustainable progress. In this context, microalgae are relevant organisms, being rich in high-value compounds and able to grow in open ponds or photobioreactors, thus enabling profitable exploitation of aquatic resources. Microalgae, a huge taxon containing photosynthetic microorganisms living in freshwater, as well as in brackish and marine waters, typically unicellular and eukaryotic, include green algae (Chlorophyceae), red algae (Rhodophyceae), brown algae (Phaeophyceae) and diatoms (Bacillariophyceae). In recent decades, diatoms have been considered the most sustainable sources of nutrients for humans with respect to other microalgae. This review focuses on studies exploring their bio-pharmacological activities when relevant for human disease prevention and/or treatment. In addition, we considered diatoms and their extracts (or purified compounds) when relevant for specific nutraceutical applications.
Accurate species identification is essential to assess biodiversity and species richness in ecosystems threatened by rapid and recent environmental changes, such as warming in most Antarctic waters. The Lepidonotothen species complex comprises demersal notothenioid fishes which inhabit the shelf areas of the Antarctic Peninsula, the Scotia Arc and sub‐Antarctic islands with a circum‐Antarctic distribution. Species determination in this group has often been problematic. In particular, whether Lepidonotothen squamifrons and Lepidonotothen kempi are valid as separate species has been questioned. In this study, we analysed the genetic variation among four nominal southern polar species within this complex (L. kempi, L. squamifrons, Nototheniops larseni, Nototheniops nudifrons) by means of three different markers (ND2 and tRNA mitochondrial genes and a panel of 16 nuclear microsatellites). We tested whether individuals morphologically assigned to L. kempi showed genetic separation from L. squamifrons. Our analyses indicated a lack of differentiation between L. kempi and L. squamifrons. However, a genetically distinct population was found for L. squamifrons at the Shag Rocks islands near South Georgia. Antarctic and sub‐Antarctic islands are known to be home to many cryptic species and further studies will elucidate if the genetically differentiated population we found potentially originated from this context and can be considered an incipient species. Our analysis contributes to further characterize the species composition of the most abundant fish suborder in the Southern Ocean, which is among the regions most threatened by climate change.
Interaction of engineered nanomaterials (ENMs) with the immune system mainly occurs with cells and molecules of innate immunity, which are present in interface tissues of living organisms. Immuno-nanotoxicological studies aim at understanding if and when such interaction is inconsequential or may cause irreparable damage. Since innate immunity is the first line of immune reactivity towards exogenous agents and is highly conserved throughout evolution, this review focuses on the major effector cells of innate immunity, the phagocytes, and their major sensing receptors, Toll-like receptors (TLRs), for assessing the modes of successful versus pathological interaction between ENMs and host defences. By comparing the phagocyte- and TLR-dependent responses to ENMs in plants, molluscs, annelids, crustaceans, echinoderms and mammals, we aim to highlight common recognition and elimination mechanisms and the general sufficiency of innate immunity for maintaining tissue integrity and homeostasis.
The advent of metabarcoding (metaB) in aquatic ecology has provided a huge amount of information on plankton biodiversity worldwide. However, the large datasets obtained with that approach are still partially explored, especially for what concerns the study of trophic interactions and food webs. In this study, we analysed a metaB time series from the Long‐Term Ecological Research station MareChiara (LTER‐MC) in the Gulf of Naples, Mediterranean Sea, Italy, to describe the link between plankton diversity and food‐web structure. We derived co‐occurrence networks from metaB time series, identified putative trophic interactions among co‐occurrences based on biological information (body size and trophic habit) available for planktonic organisms detected by metaB, and converted co‐occurrence networks into conceptual models of food webs. The latter showed structural properties resembling ecological processes, because network modularity (the presence of semi‐independent sub‐networks) paralleled trophic hierarchy (the dimensional difference between predator and prey). We also analysed the role of planktonic organisms in maintaining network modularity. The largest predators occupied distinct modules, suggesting niche partitioning, whereas the smallest preys worked as fundamental connectors between larger predators (and different modules). Overall, the presence of trophic hierarchy and modularity shown herein supports the view of the high ecological resilience of plankton, pursued via food‐web rewiring, to environmental shifts.
It is now known that the Mediterranean Sea currently is one of the major hotspot for microplastics (MPs; < 5 mm) pollution and that the risks will be even more pronounced in the coming years. Thus, the in-depth study of the mechanisms underlying the MPs toxicity in key Mediterranean organisms, subjected to high anthropic pressures, has become a categorical imperative to pursue. Here, we explore for the first time the sea urchins immune cells profile combined to their proteome upon in vivo exposure (72 h) to different concentrations of polystyrene-microbeads (micro-PS) starting from relevant environmental concentrations (10, 50, 103, 104 MP/L). Every 24 h, immunological parameters were monitored. After 72 h, the abundance of MPs was examined in various organs and coelomocytes were collected for proteomic analysis based on a shotgun label free proteomic approach. While sea urchins treated with the lowest concentration tested (10 and 50 micro-PS/L) did not show the presence of micro-PS in any tissue, in the specimens exposed to the highest concentration (103 and 104 micro-PS) there was an internalisation of 9.75 ± 2.75 and 113.75 ± 34.5 MP/g, respectively. Proteomic analyses revealed that MPs exposure altered coelomocytes protein profile not only compared to the control group but also among the different micro-PS concentrations and these variations are micro-PS concentration dependent. The proteins exclusively expressed in the coelomocytes of specimens exposed to MPs are mainly metabolite interconversion enzymes, involved in cellular processes, indicating a severe alteration of the cellular metabolic pathways. Overall, these findings provide new insights on the mode of action of MPs in the sea urchin immune cells both at the molecular and cellular level.
Prostate cancer is the most common cancer in men, with over 52,000 new cases diagnosed every year. Diagnostics and early treatment are potentially hindered by variations in screening protocols, still largely reliant on serum levels of acid phosphatase and prostate-specific antigen, with tumour diagnosis and grading relying on histopathological examination. Current treatment interventions vary in terms of efficacy, cost and severity of side effects, and relapse can be aggressive and resistant to the current standard of care. For these reasons, the scientific community is looking for new chemotherapeutic agents. This review reports compounds and extracts derived from marine organisms as a potential source of new drugs against prostate cancer. Whilst there are several marine-derived compounds against other cancers, such as multiple myeloma, leukemia, breast and lung cancer, already available in the market, the presently collated findings show how the marine environment can be considered to hold potential as a new drug source for prostate cancer, as well. This review presents information on compounds presently in clinical trials, as well as new compounds/extracts that may enter trials in the future. We summarise information regarding mechanisms of action and active concentrations.
Marine noise is an emerging pollutant inducing a variety of negative impacts on many animal taxa, including fish. Fish population persistence and dynamics rely on the supply of early life stages, which are often very sensitive to disturbance. Impacts of marine noise pollution (MNP) on juvenile fish have rarely been investigated in temperate regions. This is particularly true for the Mediterranean Sea, which is considered as an MNP hotspot due to intensive maritime traffic. In this study, we investigate the relationship between MNP related to boat traffic and (i) assemblage structure and (ii) the density of juvenile fishes (post-settlers at different stages) belonging to the Sparidae family. We quantified MNP produced by boating at four coastal locations in the French Riviera (NW Mediterranean Sea) by linearly combining five variables into a ‘noise index’ (NI): (i) boat visitation, (ii) number of boat passages/hour, (iii) the instantaneous underwater noise levels of passing boats, (iv) continuous boat underwater noise levels and (v) duration of exposure to boat noise. Then, using the NI, we identified an MNP gradient. By using juvenile fish visual censuses (running a total of 1488 counts), we found that (i) the assemblage structure and (ii) the density patterns of three fish species (i.e., Diplodus sargus, D. puntazzo, D. vulgaris) changed along the MNP gradient. Specifically, the density of early D. sargus post-settlers was negatively related to MNP, while late post-settler densities of D. puntazzo and, less evidently, D. vulgaris tended to decrease more rapidly with decreasing MNP. Our findings suggest the following potential impacts of MNP on juvenile sparids related to coastal boat traffic: (i) idiosyncratic effects on density depending on the species and the developmental stage (early vs. late post-settlers); (ii) negative effects on recruitment, due to possible alteration of late post-settlement movement patterns.
Thyroid Hormones (THs) are a class of signaling molecules produced by coupling iodine with tyrosine residues. In vertebrates, extensive data support their important role in a variety of processes such as metabolism, development and metamorphosis. On the other hand, in invertebrates, the synthesis and role of the THs have been, so far, poorly investigated, thus limiting our understanding of the function and evolution of this important animal signaling pathway. In sea urchins, for example, while several studies focused on the availability and function of external sources of iodotyrosines, preliminary evidence suggests that an endogenous TH pathway might be in place. Here, integrating available literature with an in silico analysis, various homologous genes of the vertebrate TH molecular toolkit have been identified in the sea urchin Strongylocentrotus purpuratus. They include genes involved in the synthesis (Sp-Pxdn), metabolism (Sp-Dios), transport (Sp-Ttrl, Sp-Mct7/8/10) and response (Sp-Thr, Sp-Rxr and Sp-Integrin αP) to thyroid hormones. To understand the cell type(s) involved in TH synthesis and/or response, we studied the spatial expression of the TH toolkit during urchin development. Exploiting single-cell transcriptomics data in conjunction with in situ hybridization and immunohistochemistry, we identified cell types that are potentially producing or responding to THs in the sea urchin. Finally, growing sea urchin embryos until the larva stage with and without a source of inorganic iodine, we provided evidence that iodine organification is important for larval skeleton growth.
The advent of marine stations in the last quarter of the 19th Century has given biologists the possibility of observing and experimenting upon myriad marine organisms. Among them, cephalopod mollusks have attracted great attention from the onset, thanks to their remarkable adaptability to captivity and a great number of biologically unique features including a sophisticate behavioral repertoire, remarkable body patterning capacities under direct neural control and the complexity of nervous system rivalling vertebrates. Surprisingly, the capacity to regenerate tissues and complex structures, such as appendages, albeit been known for centuries, has been understudied over the decades. Here, we will first review the limited in number, but fundamental studies on the subject published between 1920 and 1970 and discuss what they added to our knowledge of regeneration as a biological phenomenon. We will also speculate on how these relate to their epistemic and disciplinary context, setting the base for the study of regeneration in the taxon. We will then frame the peripherality of cephalopods in regeneration studies in relation with their experimental accessibility, and in comparison, with established models, either simpler (such as planarians), or more promising in terms of translation (urodeles). Last, we will explore the potential and growing relevance of cephalopods as prospective models of regeneration today, in the light of the novel opportunities provided by technological and methodological advances, to reconsider old problems and explore new ones. The recent development of cutting-edge technologies made available for cephalopods, like genome editing, is allowing for a number of important findings and opening the way toward new promising avenues. The contribution offered by cephalopods will increase our knowledge on regenerative mechanisms through cross-species comparison and will lead to a better understanding of the complex cellular and molecular machinery involved, shedding a light on the common pathways but also on the novel strategies different taxa evolved to promote regeneration of tissues and organs. Through the dialogue between biological/experimental and historical/contextual perspectives, this article will stimulate a discussion around the changing relations between availability of animal models and their specificity, technical and methodological developments and scientific trends in contemporary biology and medicine.
Paracentrotus lividus gonads, often referred to as “roe” or “uni” for gastronomical purposes, are among the most appreciated seafood delicacies in the Mediterranean area and worldwide. However, the increasing demand for human consumption has caused a growing pressure on its wild stocks, prompting the need to develop efficient aquaculture systems for its production. The set-up of effective feeds for various life stages and optimal procedures for breeding post-larvae and adult sea urchins still need to be improved. Here, for the first time, we aim at developing artificial feeds for the post-larvae of P. lividus because a critical step to improve our productive skills is post-larval growth. We tested various natural and prepared components to speed up the growth and enhance the survival rates of post-larvae, while taking into account the abiotic and biotic factors influencing the culture conditions in three replicate sets of tanks, characterized by different volumes. We tested formulated feeds and compared them with the effect of fresh foods in the frame of canonical culture practices. Our results indicated the efficiency of a feed composed of spirulina and Ulva rigida. Statistical analyses demonstrated the positive impact of this diet on the growth of post-larvae, behavior and survival rates. In addition, we demonstrated the efficacy of prepared feeds in the sea urchin aquaculture system, because they facilitated manipulation and control of the culture procedures for the satisfactory growth of P. lividus post-larvae.
The Anthropocene is characterized by dramatic ecosystem changes driven by human activities. The impact of these activities can be assessed by different geochemical and paleontological proxies. However, each of these proxies provides only a fragmentary insight into the effects of anthropogenic impacts. It is highly challenging to reconstruct, with a holistic view, the state of the ecosystems from the preindustrial period to the present day, covering all biological components, from prokaryotes to multicellular eukaryotes. Here, we used sedimentary ancient DNA (sedaDNA) archives encompassing all trophic levels of biodiversity to reconstruct the two century-natural history in Bagnoli-Coroglio (Gulf of Pozzuoli, Tyrrhenian Sea), one of the most polluted marine-coastal sites in Europe. The site was characterized by seagrass meadows and high eukaryotic diversity until the beginning of the 20th century. Then, the ecosystem completely changed, with seagrasses and associated fauna as well as diverse groups of planktonic and benthic protists being replaced by low diversity biota dominated by dinophyceans and infaunal metazoan species. The sedaDNA analysis revealed a five-phase evolution of the area, where changes appear as the result of a multi-level cascade effect of impacts associated with industrial activities, urbanization, water circulation and land-use changes. The sedaDNA allowed to infer reference conditions that must be considered when restoration actions are to be implemented.
The positive effect of fully protected Marine Protected Areas (MPAs) on marine biodiversity, and specifically on fishes, has been widely documented. In contrast, the potential of MPAs to mitigate the impact of adverse climatic conditions has seldom been investigated. Here, we assessed the effectiveness of MPAs, quantified as increasing fish biomass, across wide geographic and environmental gradients across the Mediterranean Sea. We performed underwater visual surveys within and outside MPAs to characterize fish assemblages in 52 rocky reef sites across an extent of over 3,300 km. We used the steep spatial temperature gradient across the Mediterranean as a ‘space‐for‐time’ substitution to infer climate‐driven temporal changes. We found that, as expected, Mediterranean MPAs increased fish biomass. At the same time, higher seawater temperatures are associated with decreased fish biomass, changes in species composition, and shifts towards more thermophilic species. Importantly, we found that the rate of decrease in fish biomass with temperature was similar between protected and fished sites. Taken together, these results suggest that the capacity of MPAs to harbor higher fish biomass, compared to surrounding areas, is maintained across a broad temperature range. At the same time, MPAs will not be able to offset larger‐scale biotic alterations associated with climate change. Policy implications: Our results suggest that sustained warming will likely reduce fish biomass in the Mediterranean Sea and shift community structure, requiring more conservative targets for fishery regulations. At the same time, protection from fishing will remain an important management tool even with future high‐water temperatures, and MPAs are expected to continue to provide local‐scale benefits to conservation and fisheries.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
289 members
Elisabetta Tosti
  • Laboratory of Animal Physiology and Evolution
Federica Ragazzola
  • Integrative Marine Ecology
Luciano Bosso
  • Research Infrastructures for Marine Biological Resources (RIMAR)
Information
Address
Villa Comunale, 80121, Naples, Italy
Head of institution
Roberto Danovaro
Website
http://www.szn.it/index.php/en/
Phone
+39 081 5833111
Fax
+39 081 7641355