Rockefeller University
  • New York City, United States
Recent publications
The Nicobar pigeon (Caloenas nicobarica), the closest living relative of the extinct Dodo (Raphus cucullatus), is endemic to Southeast Asia with a fragmented distribution across numerous small islands. It suffers from habitat loss, hunting, and predation from invasive species, resulting in its classification as Near-Threatened by the International Union for the Conservation of Nature (IUCN). We have generated a haplotype-resolved and chromosome-level genome assembly of the Nicobar pigeon using a combination of PacBio HiFi long-read sequencing and Arima Hi-C chromatin interaction mapping. This assembly includes two haplotypes, each spanning approximately 1.2 Gb. Haplotype 1 has a contig N50 of 25.2 Mb and a scaffold N50 of 79.7 Mb, while haplotype 2 has a contig N50 of 24.7 Mb and a scaffold N50 of 107.9 Mb. As the first high-quality genome assembly of any bird in the Columbidae Indo-Pacific clade, this resource provides valuable insights for phylogenetic studies. Furthermore, the phylogenetic proximity of the Nicobar pigeon to the Dodo (Raphus cucullatus) and the Rodrigues Solitaire (Pezophaps solitaria) offers a unique opportunity to study these extinct species, making this assembly a critical resource for evolutionary studies. It also offers a unique model for studying genetic diversity, adaptation, and speciation in island environments. This genomic resource will not only enhance our understanding of the evolutionary history of the Nicobar pigeon but also serves as a valuable tool for future conservation efforts aimed at preserving this unique species and its fragile island ecosystem.
A protective HIV vaccine will need to induce broadly neutralizing antibodies (bnAbs) in humans, but priming rare bnAb precursor B cells has been challenging. In a double-blinded, placebo-controlled phase 1 human clinical trial, the recombinant, germline-targeting envelope glycoprotein (Env) trimer BG505 SOSIP.v4.1-GT1.1, adjuvanted with AS01 B , induced bnAb precursors of the VRC01-class at a high frequency in the majority of vaccine recipients. These bnAb precursors, that target the CD4 receptor binding site, had undergone somatic hypermutation characteristic of the VRC01-class. A subset of isolated VRC01-class monoclonal antibodies neutralized wild-type pseudoviruses and was structurally extremely similar to bnAb VRC01. These results further support germline-targeting approaches for human HIV vaccine design and demonstrate atomic-level manipulation of B cell responses with rational vaccine design.
Gating in voltage-dependent ion channels is regulated by the transmembrane voltage. This form of regulation is enabled by voltage-sensing domains (VSDs) that respond to transmembrane voltage differences by changing their conformation and exerting force on the pore to open or close it. Here, we use cryogenic electron microscopy to study the neuronal K v 2.1 channel in lipid vesicles with and without a voltage difference across the membrane. Hyperpolarizing voltage differences displace the positively charged S4 helix in the voltage sensor by one helical turn (~5 Å). When this displacement occurs, the S4 helix changes its contact with the pore at two different interfaces. When these changes are observed in fewer than four voltage sensors, the pore remains open, but when they are observed in all four voltage sensors, the pore constricts. The constriction occurs because the S4 helix, as it displaces inward, squeezes the right-handed helical bundle of pore-lining S6 helices. A similar conformational change occurs upon hyperpolarization of the EAG1 channel but with two helical turns displaced instead of one. Therefore, while K v 2.1 and EAG1 are from distinct architectural classes of voltage-dependent ion channels, called domain-swapped and non-domain-swapped, the way the voltage sensors gate their pores is very similar.
The cGAS-STING pathway, well-known to elicit interferon (IFN) responses, is also a key inducer of autophagy upon virus infection or other stimuli. Whereas the mediators for cGAS-induced IFN responses are well characterized, much less is known about how cGAS elicits autophagy. Here, we report that TRIM23, a unique TRIM protein harboring both ubiquitin E3 ligase and GTPase activity, is crucial for cGAS-STING-dependent antiviral autophagy. Genetic ablation of TRIM23 impairs autophagic control of HSV-1 infection. HSV-1 infection or cGAS-STING stimulation induces TBK1-mediated TRIM23 phosphorylation at S39, which triggers TRIM23 autoubiquitination and GTPase activity and ultimately elicits autophagy. Fibroblasts from a patient with herpes simplex encephalitis heterozygous for a dominant-negative, kinase-inactivating TBK1 mutation fail to activate autophagy by TRIM23 and cGAS-STING. Our results thus identify the cGAS-STING-TBK1-TRIM23 axis as a key autophagy defense pathway and may stimulate new therapeutic interventions for viral or inflammatory diseases.
Somatosensory neurons (SSNs) that detect and transduce mechanical, thermal, and chemical stimuli densely innervate an animal’s skin. However, although epidermal cells provide the first point of contact for sensory stimuli, our understanding of roles that epidermal cells play in SSN function, particularly nociception, remains limited. Here, we show that stimulating Drosophila epidermal cells elicits activation of SSNs including nociceptors and triggers a variety of behavior outputs, including avoidance and escape. Further, we find that epidermal cells are intrinsically mechanosensitive and that epidermal mechanically evoked calcium responses require the store-operated calcium channel Orai. Epidermal cell stimulation augments larval responses to acute nociceptive stimuli and promotes prolonged hypersensitivity to subsequent mechanical stimuli. Hence, epidermal cells are key determinants of nociceptive sensitivity and sensitization, acting as primary sensors of noxious stimuli that tune nociceptor output and drive protective behaviors.
INTRODUCTION Alzheimer's disease (AD) is characterized by amyloid‐beta (Aβ), hyperphosphorylated tau, chronic neuroinflammation, blood–brain barrier (BBB) damage, and synaptic dysfunction, leading to neuronal loss and cognitive deficits. Vascular proteins, including fibrinogen, extravasate into the brain, further contributing to damage and inflammation. Fibrinogen's interaction with Aβ is well‐established, but how this interaction contributes to synaptic dysfunction in AD is unknown. METHODS Organotypic hippocampal cultures (OHC) were exposed to Aβ42 oligomers, fibrinogen, or Aβ42/fibrinogen complexes. Synaptotoxicity was analyzed by Western blot. Aβ42 oligomers, fibrinogen, or their complexes were intracerebroventricularly injected into mice. Histopathological AD markers, synaptotoxicity, neuroinflammation, and vascular markers were observed by Western blot and immunofluorescence. RESULTS Aβ42/fibrinogen complexes led to synaptic loss, tau181 phosphorylation, neuroinflammation, and BBB disruption, independent of Mac1/CD11b receptor signaling. Blocking Aβ42/fibrinogen complex formation prevented synaptotoxicity. DISCUSSION These findings indicate that the Aβ42/fibrinogen complex has a synergistic impact on hippocampal synaptotoxicity and neuroinflammation. Highlights Fibrinogen binds to the central region of Aβ, forming a plasmin‐resistant complex. The Aβ/fibrinogen complex induces synaptotoxicity, inflammation, and BBB disruption. Synaptotoxicity induced by the complex is independent of Mac1 receptor signaling.
As the primary source of noradrenaline in the brain, the locus coeruleus (LC) regulates arousal, avoidance and stress responses1,2. However, how local neuromodulatory inputs control LC function remains unresolved. Here we identify a population of transcriptionally, spatially and functionally diverse GABAergic (γ-aminobutyric acid-producing) neurons in the LC dendritic field that receive distant inputs and modulate modes of LC firing to control global arousal levels and arousal-related processing and behaviours. We define peri-LC anatomy using viral tracing and combine single-cell RNA sequencing with spatial transcriptomics to molecularly define both LC noradrenaline-producing and peri-LC cell types. We identify several neuronal cell types that underlie peri-LC functional diversity using a series of complementary neural circuit approaches in behaving mice. Our findings indicate that LC and peri-LC neurons are transcriptionally, functionally and anatomically heterogenous neuronal populations that modulate arousal and avoidance states. Defining the molecular, cellular and functional diversity of the LC and peri-LC provides a roadmap for understanding the neurobiological basis of arousal, motivation and neuropsychiatric disorders.
Likelihood-free inference for simulator-based statistical models has developed rapidly from its infancy to a useful tool for practitioners. However, models with more than a handful of parameters still generally remain a challenge for the Approximate Bayesian Computation (ABC) based inference. To advance the possibilities for performing likelihood-free inference in higher dimensional parameter spaces, we introduce an extension of the popular Bayesian optimisation based approach to approximate discrepancy functions in a probabilistic manner which lends itself to an efficient exploration of the parameter space. Our approach achieves computational scalability for higher dimensional parameter spaces by using separate acquisition functions, discrepancies, and associated summary statistics for distinct subsets of the parameters. The efficient additive acquisition structure is combined with exponentiated loss-likelihood to provide a misspecification-robust characterisation of posterior distributions for subsets of model parameters. The method successfully performs computationally efficient inference in a moderately sized parameter space and compares favourably to existing modularised ABC methods. We further illustrate the potential of this approach by fitting a bacterial transmission dynamics model to a real data set, which provides biologically coherent results on strain competition in a 30-dimensional parameter space.
Spermatogenesis is a key developmental process underlying the origination of newly evolved genes. However, rapid cell type–specific transcriptomic divergence of the Drosophila germline has posed a significant technical barrier for comparative single-cell RNA-sequencing studies. By quantifying a surprisingly strong correlation between species- and cell type–specific divergence in three closely related Drosophila species, we apply a statistical procedure to identify a core set of 198 genes that are highly predictive of cell type identity while remaining robust to species-specific differences that span over 25 to 30 My of evolution. We then utilize cell type classifications based on the 198-gene set to show how transcriptional divergence in cell type increases throughout spermatogenic developmental time. After validating these cross-species cell type classifications using RNA fluorescence in situ hybridization and imaging, we then investigate the influence of genome organization on the molecular evolution of spermatogenesis vis-a-vis transcriptional bursting. We first show altering transcriptional burst size contributes to premeiotic transcription and altering bursting frequency contributes to postmeiotic expression. We then report global differences in autosomal vs. X chromosomal transcription may arise in a developmental stage preceding full testis organogenesis by showing evolutionarily conserved decreases in X-linked transcription bursting kinetics in all examined somatic and germline cell types. Finally, we provide evidence supporting the cultivator model of de novo gene origination by demonstrating how the appearance of newly evolved testis-specific transcripts potentially provides short-range regulation of neighboring genes’ transcriptional bursting properties during key stages of spermatogenesis.
The yellow fever virus 17D (YFV-17D) live attenuated vaccine is considered one of the most successful vaccines ever generated associated with high antiviral immunity, yet the signaling mechanisms that drive the response in infected cells are not understood. Here, we provide a molecular understanding of how metabolic stress and innate immune responses are linked to drive type I IFN expression in response to YFV-17D infection. Comparison of YFV-17D replication with its parental virus, YFV-Asibi, and a related dengue virus revealed that IFN expression requires RIG-I-Like Receptor signaling through MAVS, as expected. However, YFV-17D uniquely induces mitochondrial respiration and major metabolic perturbations, including hyperactivation of electron transport to fuel ATP synthase. Mitochondrial hyperactivity generates reactive oxygen species (ROS) including peroxynitrite, blocking of which abrogated MAVS oligomerization and IFN expression in non-immune cells without reducing YFV-17D replication. Scavenging ROS in YFV-17D-infected human dendritic cells increased cell viability yet globally prevented expression of IFN signaling pathways. Thus, adaptation of YFV-17D for high growth imparts mitochondrial hyperactivity to meet energy demands, resulting in generation of ROS as the critical messengers that convert a blunted IFN response into maximal activation of innate immunity essential for vaccine effectiveness.
Fanconi anemia (FA) is a rare genetic disease characterized by loss-of-function variants in any of the 22 previously identified genes (FANCA-FANCW) that encode proteins participating in the repair of DNA interstrand crosslinks (ICLs). Patient phenotypes are variable, but may include developmental abnormalities, early onset pancytopenia, and predisposition to hematologic and solid tumors. Here, we describe two unrelated families with multiple pregnancy losses and offspring presenting with severe developmental and hematologic abnormalities leading to death in utero or in early life. Homozygous loss-of-function variants in FAAP100 were identified in affected children of both families. The FAAP100 protein associates with FANCB and FANCL, the E3 ubiquitin ligase responsible for the monoubiquitination of FANCD2 and FANCI, which is necessary for FA pathway function. Patient-derived cells exhibited phenotypes consistent with FA. Expression of the wild-type FAAP100 cDNA, but not the patient-derived variants, rescued the observed cellular phenotypes. This establishes FAAP100 deficiency as a cause of Fanconi anemia, with FAAP100 gaining an alias as FANCX. The extensive developmental malformations of individuals with FAAP100 loss-of-function variants are among the most severe across previously described FA phenotypes, indicating that the FA pathway is essential for human development.
Purpose In the receptor organs of the inner ear, hair cells detect mechanical stimuli such as sounds and accelerations by deflection of their hair bundles. Myosin regulatory light chain (RLC) and non-muscle myosin II (NM2) are expressed at the apical surfaces of hair cells, and NM2 and the phosphorylation of RLC by myosin light chain kinase (MLCK) have earlier been shown to regulate the shapes of hair cells’ apical surfaces in rodents. The aim of our study was to elucidate the function of myosin molecules on hair cell physiology. Methods We investigated the expression of NM2 and RLC in the bullfrog’s saccule by immunostaining. Using NM2 and MLCK inhibitors, we measured the stiffness, spontaneous oscillation, and resting open probability of frog hair bundles. Six to ten saccules from pleural animals were used in each experiment. In addition, we recorded auditory brainstem responses in ten mice after transtympanic injection of an MLCK inhibitor. Results We confirmed the expression of NM2A/B and MYL9 on the apical surfaces of hair cells and of NM2A and MYL12A in hair bundles. We found that NM2 and MLCK inhibitors reduce the stiffness of hair bundles from the bullfrog's saccule. Moreover, MLCK inhibition inhibits the spontaneous oscillation of hair bundles and increases the resting open probability of transduction channels. In addition, MLCK inhibition elevates hearing thresholds in mice. Conclusion We conclude that NM2 and the phosphorylation of RLC modulate the physiological function of hair cells and thereby help to set the normal operating conditions of hair bundles.
The last decades have brought a rapid expansion of the number of primary disorders related to the polyubiquitination pathways in humans. Most of these disorders manifest with two seemingly contradictory clinical phenotypes: autoinflammation, immunodeficiency, or both. We provide an overview of the molecular pathogenesis of these disorders, and their role in inflammation and infection. By focusing on data from human genetic diseases, we explore the complexities of the polyubiquitination pathways and the corresponding clinical phenotypes of their deficiencies. We offer a road map for the discovery of new genetic etiologies. By considering the triggers that induce inflammation, we propose autoinflammation and immunodeficiency as continuous clinical phenotypes.
This report provides an updated classification of inborn errors of immunity (IEIs) involving 508 different genes and 17 phenocopies. Of these, we report 67 novel monogenic defects and 2 phenocopies due to neutralizing anti-cytokine autoantibodies or somatic mutations, which either have been discovered since the previous update (published June 2022) or were reported earlier but have been recently confirmed and/or expanded. The new additions were made after rigorous review of new genetic descriptions of IEIs by the International Union of Immunological Societies (IUIS) Expert Committee using criteria established to define IEI. Although similar pathogenic variants in one gene, in terms of both classes of mutation (missense, nonsense, etc.) and impact on protein function, can result in a spectrum of phenotypic manifestations, they are herein classified according to the most consistently reported phenotype. In addition, because different variants in a single gene can result in recognizable diseases due to gain or loss of function, such cases are classified according to their clinical manifestations as a distinct entry in the same or a different table depending on the associated phenotype. This report will serve as a valuable resource for clinical immunologists and geneticists involved in the molecular diagnosis of individuals with heritable and acquired immunological disorders. Moreover, we expect this report to also serve as a valuable resource for all disciplines of medicine, since patients with IEIs may be first seen by rheumatologists, hematologists, allergists, dermatologists, neurologists, gastroenterologists, and pulmonologists, depending upon their spectrum of presenting clinical features. Finally, expanding the known monogenic and related causes of human immune diseases requires dissection of underlying cellular and molecular mechanisms, which reveals fundamental requirements for specific genes, pathways, processes, and even cell types. Such knowledge may not only contribute to improved patient diagnosis and management but also pave the way to the development and implementation of therapies that target the cause—rather than the symptoms—of these conditions.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
1,087 members
Roham Parsa
  • Laboratory of Mucosal Immunology
Alexander Tomasz
  • Laboratory of Microbiology and Infectious Diseases
Robert Darnell
  • Laboratory of Molecular Neuro-Oncology
Jean-Nicolas Audet
  • Center for Field Research in Ethology and Ecology
Information
Address
New York City, United States