Recent PublicationsView all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Measurements on the dissociative recombination (DR) of protonated acrylonitrile, CH 2 CHCNH + , have been performed at the heavy ion storage ring CRYRING located in the Manne Siegbahn Laboratory in Stockholm, Sweden. It has been found that at ∼2 meV relative kinetic energy about 50% of the DR events involve only ruptures of X–H bonds (where X = C or N) while the rest leads to the production of a pair of fragments each containing two heavy atoms (alongside H and/or H 2). The absolute DR cross section has been investigated for relative kinetic energies ranging from ∼1 meV to 1 eV. The thermal rate coefficient has been determined to follow the expression k(T) = 1.78 × 10 −6 (T/300) −0.80 cm 3 s −1 for electron temperatures ranging from ∼10 to 1000 K. Gas-phase models of the nitrile chemistry in the dark molecular cloud TMC-1 have been run and results are compared with observations. Also, implications of the present results for the nitrile chemistry of Titan's upper atmosphere are discussed.
    Full-text · Article · Oct 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Energy levels and radiative rates are reported for transitions in Cl-like W LVIII. Configuration interaction (CI) has been included among 44 configurations (generating 4978 levels) over a wide energy range up to 363 Ryd, and the general-purpose relativistic atomic structure package ({\sc grasp}) adopted for the calculations. Since no other results of comparable complexity are available, calculations have also been performed with the flexible atomic code ({\sc fac}), which help in assessing the accuracy of our results. Energies are listed for the lowest 400 levels (with energies up to $\sim$ 98 Ryd), which mainly belong to the 3s$^2$3p$^5$, 3s3p$^6$, 3s$^2$3p$^4$3d, 3s$^2$3p$^3$3d$^2$, 3s3p$^4$3d$^2$, 3s$^2$3p$^2$3d$^3$, and 3p$^6$3d configurations, and radiative rates are provided for four types of transitions, i.e. E1, E2, M1, and M2. Our energy levels are assessed to be accurate to better than 0.5%, whereas radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.
    Preview · Article · Jun 2014 · Atomic Data and Nuclear Data Tables
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Super-luminous supernovae that radiate more than 10(44) ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of 'pair-instability' supernovae. Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of (56)Ni are synthesized; this isotope decays to (56)Fe via (56)Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10-16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10(-6) times that of the core-collapse rate.
    Full-text · Article · Oct 2013 · Nature
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.
View all

Top publications last week by reads

Astronomy and Astrophysics 01/2016;
31 Reads
Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms 05/2003; 205:239-243. DOI:10.1016/S0168-583X(02)02037-2
6 Reads