Recent PublicationsView all

  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Deregulated signalling of the Receptor Tyrosine Kinase (RTK), Met, and/or its ligand HGF have been associated with cancer formation and progression to metastasis, with Met/HGF often overexpressed or mutated. Thus, Met has become a major target for cancer therapy and its inhibition is currently being tested in the clinic. It has recently become evident that, instead of signalling at the plasma membrane only, Met signals post-internalisation from endosomal compartments. Thus, Met endocytic trafficking is required for the full activation of signals such as Gab1, ERK 1/2, STAT3 and Rac1, all implicated in cell survival, invasion and metastasis. Modifications in the balance between degradation and recycling of Met may also impinge on Met signalling. Moreover, oncogenic Met mutations in the kinase domain trigger constitutive Met internalisation/recycling, leading to "endosomal signalling" and consequent cell transformation. Using Met as an example, this review outlines the evidence that the molecular mechanisms regulating trafficking and endosomal signalling may be exploited to design future cancer therapies.
    Full-text available · Article · Jan 2014 · The international journal of biochemistry & cell biology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Human pancreatic ductal adenocarcinoma (PDAC) is characterized by early systemic dissemination. Although RhoC has been implicated in cancer cell migration, the relevant underlying molecular mechanisms remain unknown. RhoC has been implicated in the enhancement of cancer cell migration and invasion, with actions which are distinct from RhoA (84% homology), and are possibly attributed to the divergent C-terminus domain. Here, we confirm that RhoC significantly enhances the migratory and invasive properties of pancreatic carcinoma cells. In addition, we show that RhoC over-expression decreases cancer cell adhesion and, in turn, accelerates cellular body movement and focal adhesion turnover, especially, on fibronectin-coated surfaces. Whilst RhoC over-expression did not alter integrin expression patterns, we show that it enhanced integrin α5β1 internalization and re-cycling (trafficking), an effect that was dependent specifically on the C-terminus (180-193 amino acids) of RhoC protein. We also report that RhoC and integrin α5β1 co-localize within the peri-nuclear region of pancreatic tumor cells, and by masking the CAAX motif at the C-terminal of RhoC protein, we were able to abolish this interaction in vitro and in vivo. Co-localization of integrin α5β1 and RhoC was demonstrable in invading cancer cells in 3D-organotypic cultures, and further mimicked in vivo analyses of, spontaneous human, (two distinct sources: operated patients and rapid autopsy programme) and transgenic murine (LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre), pancreatic cancers. In both cases, co-localization of integrin α5β1 and RhoC correlated with poor differentiation status and metastatic potential. We propose that RhoC facilitates tumor cell invasion and promotes subsequent metastasis, in part, by enhancing integrin α5β1 trafficking. Thus, RhoC may serve as a biomarker and a therapeutic target.
    Full-text available · Article · Dec 2013 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Genome wide association studies have identified single nucleotide polymorphisms (SNP) within fibroblast growth factor receptor 2 (FGFR2) as one of the highest ranking risk alleles in terms of development of breast cancer. The potential effect of these SNPs, in intron two, was postulated to be due to the differential binding of cis-regulatory elements, such as transcription factors, since all the SNPs in linkage disequilibrium were located in a regulatory DNA region. A Runx2 binding site was reported to be functional only in the minor, disease associated allele of rs2981578, resulting in increased expression of FGFR2 in cancers from patients homozygous for that allele. Moreover, the increased risk conferred by the minor FGFR2 allele associates most strongly in oestrogen receptor alpha positive (ERα) breast tumours, suggesting a potential interaction between ERα and FGFR signalling. Here, we have developed a human cell line model system to study the effect of the putative functional SNP, rs2981578, on cell behaviour. MCF7 cells, an ERα positive breast cancer cell line homozygous for the wild-type allele were edited using a Zinc Finger Nuclease approach. Unexpectedly, the acquisition of a single risk allele in MCF7 clones failed to affect proliferation or cell cycle progression. Binding of Runx2 to the risk allele was not observed. However FOXA1 binding, an important ERα partner, appeared decreased at the rs2981578 locus in the risk allele cells. Differences in allele specific expression (ASE) of FGFR2 were not observed in a panel of 72 ERα positive breast cancer samples. Thus, the apparent increased risk of developing ERα positive breast cancer seems not to be caused by rs2981578 alone. Rather, the observed increased risk of developing breast cancer might be the result of a coordinated effect of multiple SNPs forming a risk haplotype in the second intron of FGFR2.
    Full-text available · Article · Nov 2013 · PLoS ONE
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.