363
1,835.22
5.06
1,111

Recent PublicationsView all


  • No preview · Article · Nov 2013 · The Lancet
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To overcome the potential drawbacks of a short half-life and dose-related adverse effects of using active transforming growth factor-beta 1 for cartilage engineering, a cell-mediated latent growth factor activation strategy was developed incorporating latent transforming growth factor-β1 (LTGF) into an electrospun poly(L-lactide) scaffold. The electrospun scaffold was surface modified with NH3 plasma and biofunctionalised with LTGF to produce both random and orientated biofunctionalised electrospun scaffolds. Scaffold surface chemical analysis and growth factor bioavailability assays were performed. In vitro biocompatibility and human nasal chondrocyte gene expression with these biofunctionalised electrospun scaffold templates were assessed. In vivo chondrogenic activity and chondrocyte gene expression were evaluated in athymic rats. Chemical analysis demonstrated that LTGF anchored to the scaffolds was available for enzymatic, chemical and cell activation. The biofunctionalised scaffolds were non-toxic. Gene expression suggested chondrocyte re-differentiation after 14 days in culture. By 6 weeks, the implanted biofunctionalised scaffolds had induced highly passaged chondrocytes to re-express Col2A1 and produce type II collagen. We have demonstrated a proof of concept for cell-mediated activation of anchored growth factors using a novel biofunctionalised scaffold in cartilage engineering. This presents a platform for development of protein delivery systems and for tissue engineering.
    Full-text · Article · Nov 2013 · Archives of Plastic Surgery
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this article, we give an overview of new technologies for the diagnosis of tuberculosis (TB) and drug resistance, consider their advantages over existing methodologies, broad issues of cost, cost-effectiveness and programmatic implementation, and their clinical as well as public health impact, focusing on the industrialized world. Molecular nucleic-acid amplification diagnostic systems have high specificity for TB diagnosis (and rifampicin resistance) but sensitivity for TB detection is more variable. Nevertheless, it is possible to diagnose TB and rifampicin resistance within a day and commercial automated systems make this possible with minimal training. Although studies are limited, these systems appear to be cost-effective. Most of these tools are of value clinically and for public health use. For example, whole genome sequencing of Mycobacterium tuberculosis offers a powerful new approach to the identification of drug resistance and to map transmission at a community and population level.
    Full-text · Article · Aug 2013 · BMC Medicine
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.