Periyar Maniammai University
Recent publications
Low frequency (40 kHz) ultrasound-assisted technique was utilized in the synthesis of CoFe2O4, GaOOH and α-Ga2O3 nanorods. CoFe2O4 was tethered successfully at the crystal matrices of GaOOH and α-Ga2O3 nanorods to form heterojunction nanocatalysts (CoFe2O4/GaOOH; CoFe2O4/Ga2O3). The heterojunction nanocatalysts were characterized using various analytical tools to confirm the expected modifications. The band gap of GaOOH (Eg = 4.50 eV) and α-Ga2O3 (Eg = 4.46 eV) are reduced in the formed heterojunctions nanocatalysts CoFe2O4/GaOOH (Eg =2.56 eV) and CoFe2O4/Ga2O3 (Eg = 2.51 eV), respectively. Moreover, the XRD and HR-TEM analyses demonstrate the formation of heterojunction nanocatalysts composed of the lattice diffusion of Co and Fe of CoFe2O4 into the matrix of α-Ga2O3 nanorods with good crystallinity. The photocatalytic efficiency was assessed during solar light-driven photocatalyic oxidation of norflurazon in single treatments and also assisted by peroxymonosulfate addition. The experimental results indicate that ~ 98% of the norflurazon (NRF) is oxidized within 40 min of solar light irradiation in the presence of CoFe2O4/α-Ga2O3 heterojunction nanophotocatalyst, having higher photocatalytic efficiency than benchmarked TiO2 nanoparticles (Degussa P25). Moreover, the results also show that the addition of peroxymonosulfate (PMS) boosts the photocatalytic oxidation and achieved 99% NRF oxidation within 10 min of solar light irradiation by the generation of SO4●− and ●OH radicals. The novel synthesized heterojunction nanophotocatalyst (CoFe2O4/α-Ga2O3) results to be highly stable after six consecutive operating cycles.
Ovarian carcinoma has a cure rate of 30% which makes it deadlier than any other disease. There are a number of genetic and epigenetic changes that lead to ovarian carcinoma cell transformation. Chemoprevention of cancer through application of natural compounds is the need of present generation as other methods are rigorous and have many side effects. Betanin, a compound from Beta vulgaris extract is used in present study to check its potential for inhibition of (PA-1) cancer cell proliferation. Determination of IC50 values through MTT assay was carried out, in addition measurement of Mitochondrial Membrane Potential (MMP), effect of Reactive Oxygen Species (ROS) generation and induction of Apoptosis in ovarian cancer cells through betanin was also observed. Results have shown betanin as a potential candidate for inhibition of ovarian cancer cell proliferation and it can be taken up as a serious compound for further studies for its application in cancer cure.
In the present report, the generation of Tantalum oxyfluoride and oxynitride upon ammonolysis of the gel obtained from modified tantalum-alkoxo complexes is reported. To the best of our knowledge, this is first report of the formation of tantalum oxyfluoride thin films via ammonolysis of the β-diketone modified tantalum-alkoxo complex [Ta(OEt) 4 (CF 3 COCH 2 COCH 3 )] m . The integration of nitrogen and fluorine in lattice sites of metal oxides leads to significant reduction in the band gap, resulting in their activation under visible light. Moreover, in this report the effect of the modified alkoxide precursors and ammonolysis on the photo-physical properties of Ta 2 O 5 thin films have also been investigated and compared with the results obtained from films fabricated from unmodified tantalum (V) ethoxide. ¹ H NMR, ¹³ C NMR and elemental analyses confirmed successful modification of tantalum (V) ethoxide to [Ta(OCH 2 CH 3 ) 4 (CH 3 COCHClCOCH 3 )] m ( 1 ), [Ta(OCH 2 CH 3 ) 4 (CF 3 COCH 2 COCH 3 ] m ( 2 ) and [Ta(OCH 2 CH 3 ) 4 (CH 3 COC(CH 3 ) 2 COCH 3 ))] m ( 3 ). The fabrication of Ta 2 O 5 thin films involved the spin casting of the gels of modified tantalum alkoxo complexes (processed by sol-gel method) on to glass substrate. X-ray photoelectron spectroscopy results show that nitrogen was incorporated into the ammonolyzed films fabricated from complex precursors ( 1 ) and ( 3 ), while the presence of fluorine as tantalum oxyfluoride was confirmed in the ammonolyzed film fabricated from complex ( 2 ) precursor. The optical characterization insinuate band gap narrowing from 3.55 eV for undoped film prepared from tantalum (V) ethoxide to 3.47 eV for undoped film prepared from [Ta(OEt) 4 (CF 3 COCH 2 COCH 3 )] m and 3.05 eV for ammonolyzed film obtained from [Ta(OEt) 4 (CF 3 COCH 2 COCH 3 )] m precursor. Furthermore, enhanced photocatalytic efficiency of the films is demonstrated by degradation of methylene blue dye.
Chromobacterium violaceum (C. violaceum) is a Gram-negative, rod-shaped facultatively anaerobic bacterium implicated with recalcitrant human infections. Here, we evaluated the antiQS and anti-biofilm activities of ethyl acetate extract of Passiflora edulis (P.edulis) on the likely inactivation of acyl-homoserine lactone (AHL)-regulated molecules in C.violaceum both by in vitro and in silico analyses. Our investigations showed that the sub-MIC levels were 2, 1 and 0.5 mg/ml, and the concentrations showed marked reduction in violacein pigment production by 75.8, 64.6 and 35.2 %. AHL quantification showed 72.5, 52.2 and 35.9 % inhibition, inhibition of EPS production (72.8, 36.5 and 25.9 %), reduction in biofilm formation (90.7, 69.4 and 51.8 %) as compared to control. Light microscopy and CLSM analysis revealed dramatic reduction in the treated biofilm group as compared to control. GC-MS analysis showed 20 major peaks whose chemical structures were docked as CviR ligand. The highest docking score was observed for hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester bonds in the active site of CviR with a binding energy of -8.825 kcal/mol. Together, we found that hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester remarkably interacted with CviR to inhibit the QS system. Hence, we concluded that hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester of P. edulis could likely be evaluated for treating C. violaceum infections.
Nickel-titanium based shape memory alloys (NiTi SMAs) are extensively used in the biomedical field due to its unique properties such as superelasticity and shape memory effect. The martensite transformation can be executed in SMAs using these unique properties. The martensite transformation can be mainly influenced by the size of the grains presented in the alloy. Therefore, the control of grain size as per the requirement is a crucial in smart materials development. In this work, the nickel-titanium-copper (NiTiCu) SMA has been developed using spark plasma sintering (SPS) process at different temperatures. The sintering temperature is a significant factor that influences the size of grains in the consolidated alloys. The formation of grains in the sintered alloys has been evaluated with respect to the temperature which led to the formation of precipitates such as Ni3Ti, Ni4Ti3 and Ni3Ti2 in the SMA. The effects of sintering temperature on the grain size have been investigated using computational thermokinetics at different temperatures such as 700 °C, 800 °C and 900 °C. Moreover, the same has been carried out in experimentally and evaluated using transmission electron microscope (TEM) analysis. The results of the simulation and experiment exhibited the trend of the growth of grain with an increase of sintering temperature. In addition to these, the dislocation density, sub-grain size and recrystallized fractions were investigated on the sintered alloy.
To expand the usage, reliability, availability of power resources and some distribution system must be met which is conceivable by the support of present day information technologies. This paper concentrates on client support and electricity distribution, where payment of electric bills (counting energy utilization every month or year and association points of interest) should be possible with online arrangements. It is proposed a protected and reliable solution which joins the elements of the electrical system with the network systems to give better execution on informing issues, which is done given demand location. The electric readings of the client will be upgraded each month in the database which is kept up in the distributed storage. The client will be furnished with security keys to see the perusing values and perform payment of bills. To make the solution more available, the dynamic information will be kept up on different servers in various areas of the cloud, and there will be a service supplier who deals with the service request. The hardwired electric meter transmits the electrical reading, which turn accesses the particular service to make an entry for the specific association at the cloud. The usage data will be kept up at various area of the cloud, which is accessible with security, measures various clients. The customer availability is controlled with SCADA. © 2018 Springer Science+Business Media, LLC, part of Springer Nature
The main goal behind the combined economic emission dispatch (CEED) is to reduce the costs incurred upon fuel and emission for the generating units available without any intention to violate the generator and security constraints. Hence, the CEED must be handled after considering two challenging goals such as the costs involved with emission and fuel. In this paper, chaotic self‐adaptive interior search algorithm (CSAISA) was proposed to solve the CEED problems, considering the nonlinear behavior of generators in terms of valve point effects, prohibited operating zones, and security constraints. The proposed algorithm was tested for its effectiveness using 11‐generating units (without security), IEEE‐30 bus system, and IEEE‐118 bus system with security constraints. The results of the proposed CSAISA were compared with interior search algorithm (ISA), harmony search algorithm (HSA), differential evolution (DE), particle swarm optimization (PSO), and genetic algorithm (GA). To conclude, the proposed CSAISA outperformed all other algorithms in terms of convergence speed, implementation time, and solution quality, which was tested using performance metrics.
The activation of peroxisome proliferator-activated receptor α (PPARα) is a key pharmacological drug target for dyslipidemic management. Dyslipidemia is associated with abnormal serum lipid profiles viz. elevated total cholesterol, high triglyceride, elevated low-density lipoprotein cholesterol, and reduced high-density lipoprotein cholesterol levels. Fenofibrate, a third-generation fibric acid derivative, is an activator of PPARα indicated for the treatment of mixed dyslipidemia and hypertriglyceridemia in adults. Fenofibrate is considered an important lipid-lowering medication employed in patients afflicted with atherogenic dyslipidemia. Intriguingly, recent bench studies have demonstrated an array of cardiovascular and renal pleiotropic beneficial activities of fenofibrate, besides its foremost lipid-lowering action. The activation of PPARα by fenofibrate could negatively regulate the cardiomyocyte hypertrophy. In addition, fenofibrate has been suggested to have a protective effect against experimental ischemia/reperfusion injury in the myocardium in part via endoplasmic reticulum stress inhibition. Fenofibrate has also been shown to suppress arrhythmias in isolated rat hearts subjected to ischemic/reperfusion-induced cardiac injury. Moreover, in a rat model of metabolic syndrome and myocardial ischemia, fenofibrate therapy has been shown to restore antioxidant protection and improve myocardial insulin resistance. Furthermore, studies have highlighted the pleiotropic vascular endothelial protective and antihypertensive actions of fenofibrate. Interestingly, recent bench studies have demonstrated renoprotective actions of fenofibrate by implicating diverse mechanisms. This review sheds light on the current perspectives and molecular mechanistic aspects pertaining to the cardiovascular pleiotropic actions of fenofibrate. Additionally, the renal pleiotropic actions of fenofibrate by focusing its possible modulatory role on renal fibrosis, inflammation and renal epithelial-to-mesenchymal transition have been enlightened.
The present study was conducted to isolate and characterise Pb-resistant lactic acid bacteria (LAB), and thus determine their potential for use as probiotics against Pb toxicity. A total of 107 Pb-resistant LAB strains were isolated from the gut content of Cyprinus carpio, of which 41 were established to be gram-positive and catalase-negative. Investigation of the Pb-binding ability of these isolated LAB identified seven strains (P2, P6, P7, P9, P16, P19 and P22) with comparatively high Pb-binding activities. These were selected for further screening to establish their Pb tolerance, anti-oxidative capacity and in vitro probiotic characteristics. Strain P16 exhibited both the highest Pb-binding and a relatively good antioxidant capacity. Furthermore, P16 displayed a high survival rate during 4 h of exposure to both low-pH (2.5–3.5) conditions and 10.0% fish bile, and a strong capacity to adhere to fish intestinal mucus (62.4%). Furthermore, P16 showed strong antibacterial activities against all tested fish pathogens. Strains P6, P9, P16, P19 and P22 were susceptible to a range of tested antibiotics, but not to vancomycin. Thus, of the isolated lactobacilli, strain P16 exhibited the best Pb-binding ability, a high level of antioxidant activity and satisfactory in vitro probiotic properties. Biochemical and 16S-rRNA gene analyses identified P16 as Lactobacillus reuteri. Thus, the results of the conducted in vitro tests suggest that the fish-associated P16 Lact. reuteri strain is a promising candidate probiotic, which should undergo further investigation to assess its suitability for use in protecting against lead-exposure-induced toxicities in aquaculture.
The steady and transient flow simulations in an aorta model of normal subject were carried through computational fluid dynamic (CFD) technique. The steady- and transient-state computational fluid dynamic models of patient-specific aortic aneurysm were developed. The computed tomographic (CT) image data was used to generate the geometry of aortic models. The laminar flow was considered for simulating the flow of blood. The haemodynamic parameters like wall pressure, wall shear stress (WSS) and velocity distribution were estimated from the models. The obtained results depicted that the flow in the aorta model of normal subject was stable and aneurysmal aorta model became unstable. It is observed from the steady-state analysis that all the measured parameters from aneurysmal aorta model were higher than those obtained from the aorta model of normal subject. These measured parameters from this study could help the surgeons in assessing the severity of aortic aneurysms.
Coconut water (CW) is a clear, nutritive liquid found as the coconut endosperm of green coconuts such as Cocos nucifera L., and its widespread consumption owes to its unique composition of sugars, minerals, vitamins, enzymes, and hormones. Probiotic fermentation of CW may facilitate the development of an improved functional beverage with probiotic benefits; therefore, we aimed to produce a fermented CW beverage using the potential probiotic Lactobacillus casei L4. CW was fermented with L. casei L4 for 48 h at 35°C, and the pH, organic acid-production rate, antioxidant activity, antibacterial activity, sugar, mineral, vitamin B12 levels, and total viable bacteria counts were investigated at 24 and 48 h. We demonstrated that the fermentation of CW with probiotic lactobacilli increased the cell viability count. Vitamin B12 production was highest in the extracellular environment at 48 h (11.47 μg/mL), while the total phenolic content was significantly (p < 0.05) higher in the fermented CW at 48 h (72.1 μg/mL gallic acid equivalents) than observed with the other investigated groups or time points. The fermented materials exhibited the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging activities at 48 h (58.4 and 69.2%, respectively). The levels of most minerals remained unchanged in the fermented CW, except for calcium, manganese, phosphorus, and sodium. Furthermore, the culture supernatant from fermented CW inhibited the growth of foodborne pathogens such as Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, and Salmonella typhi, although the degree of inhibition varied between the species. Moreover, adding 15% honey and artificial coconut flavor to the fermented CW resulted in a better-tasting product, as demonstrated by a sensory-evaluation test. The obtained results indicated that the CW product fermented by L. casei L4 may be used as a novel functional beverage containing both electrolytes and probiotics, and can serve as a good vehicle for preparing a wider range of novel products.
Purpose Degraded failures and sudden critical failures are quite prevalent in industries. Degradation processes commonly belong to Weibull family and critical failures are found to follow Exponential Distribution. Therefore it becomes important to carry out reliability and availability analysis of such systems. From the reported literature it is learnt that models are available for the situations where the degraded failures as well as critical failures follow Exponential distribution. The purpose of the paper is to present models suitable for reliability and availability analysis of systems where the degradation process follows Weibull distribution and critical failures follow Exponential distribution. Design/methodology/approach The research uses Semi-Markov modeling using the approach of method of stages which is suitable when the failure processes follow Weibull distribution. The paper considers various states of the system and uses state transition diagram to present the transition of the system between good state, degraded state and failed state. Method of stages is used to convert the Semi-Markov Model to Markov Model. The number of stages calculated in Method of stages is usually not an integer value which needs to be round off. Method of stages thus suffers from the rounding off error. A unique approach is proposed to arrive at failure rates to reduce the error in Method of Stages. Periodic inspection and repairs of systems are commonly followed in industries to take care of system degradation. This paper presents models to carry out reliability and availability analysis of the systems including the case where degraded failures can be arrested by appropriate inspection and repair. Findings The proposed method for estimating the degraded failure rate can be used to reduce the error in Method of Stages. The models and the methodology are suitable for reliability and availability analysis of systems involving degradation which is very common in systems involving moving parts. These models are very suitable in accurately estimating the system reliability and availability which is very important in industry. The models conveniently cover the cases of degraded systems for which the model proposed by Hokstad and Frovig is not suitable. Research limitations/implications The models developed consider the systems where the repair phenomenon follows exponential and the failure mechanism follows Weibull with shape parameter greater than 1. Practical implications These models can be suitably used to deal with reliability and availability analysis of systems where the degradation process is non-exponential. Thus the models can be practically used to meet the industrial requirement of accurately estimating the reliability and availability of degradable systems. Originality/value A unique approach is presented in this paper for estimating degraded failure rate in the method of stages which reduces the rounding error. The models presented for reliability and availability analyses can deal with degradable systems where the degradation process follows Weibull distribution, which is not possible with the model presented by Hokstad and Frovig.
Harmful effects of heavy metals are myriad. Lead (Pb) from soil and atmosphere contaminates water bodies and affects the aquatic animals. Our previous study confirmed the in vitro probiotic potential of Lactobacillus reuteri against Pb toxicity, but further investigation is necessary for gaining insights into the related protection mode. Therefore, in this study, we investigated the protective effects of the potential probiotic L. reuteri P16 against waterborne Pb exposure-induced toxicity in the freshwater fish Cyprinus carpio. Fish (average weight: 23.16 ± 0.73 g) were allocated to four groups (control, Pb only, Pb + L. reuteri P16, and L. reuteri P16 only) and Pb groups were exposed to waterborne Pb (1 mg L−1) for 6 weeks. L. reuteri P16 (108 CFU g−1) supplemented diet was provided twice daily. Growth performances, hemato-biochemical parameters, innate immune responses, intestinal microbiota, and Pb accumulation in tissues were measured at the end of the trial. When the fish were exposed to Pb, dietary supplementation of L. reuteri P16 effectively decreased mortality and accumulation of Pb in tissues, and improved the growth performance. Co-treatment with Pb and L. reuteri P16 alleviated Pb exposure-induced oxidative stress, reversed alterations in hemato-biochemical parameters, improved innate immune parameters, and restored intestinal enzymatic activities. Moreover, L. reuteri P16 supplementation reversed the changes in intestinal microbiota in Pb-exposed fish. Furthermore, Pb exposure decreased the expressions of pro-inflammatory cytokines (TNF-α, IL-1β). However, the expression of heat shock proteins (HSP70 and HSP90) increased, which might have increased the cellular stress. Interestingly, the Pb-induced alterations of gene expressions were reversed by L. reuteri P16 supplementation. Thus, dietary administration of the potential probiotic L. reuteri P16 had several beneficial effects on growth performance and immune responses, decreased Pb accumulation in tissues, and reversed alterations in hematological responses of C. carpio. Furthermore, it offered direct protection against Pb-induced oxidative stress. Therefore, L. reuteri P16 may be a novel dietary supplement for enhancing growth performance and preventing Pb-exposure-induced toxicity in fish in aquaculture and aquatic products.
Introduction Cancer is one of the current leading cause of death all over the world. Among the various emerging technologies, nanotechnology plays a prominent role in delivering the drug to the target region. Materials and Methods In this study, the In vitro effect of doxorubicin adsorbed gold nanoparticles synthesized by Azadirachta Indica leaves extract as reducing agent and the doxorubicin entrapped modified liposomes called transfersomes was compared over the cervical cancer cell line (HeLa cell lines). The synthesized gold nanoparticles were characterized using a UV-visible spectrophotometer, SEM analysis. Results The UV-Visible spectrum showed the peak at 537nm and the incorporation of drug over the nanoparticles was conformed using FTIR and SEM analysis. The drug entrapment onto transfersomes was also characterized using FTIR and SEM analysis. When compared, the drug entrapped transfersomes shows significant effect with the lowest concentration of drug (0.25 µg/mL) than the drug adsorbed nanoparticles. Conclusion Hence, the transfersomes may also become the promising drug carrier in the future.
Tin-doped cadmium oxide (Sn:CdO) transparent thin films with different Sn concentrations were deposited on glass and p-silicon substrates by the chemical spray method at 250 °C. Different concentrations of stannic chloride were used to prepare Sn:CdO thin films. The prepared doped and un-doped CdO films were subjected to X-ray diffraction (XRD), scanning electron microscopy and atomic force microscopy, optical absorption, and electrical analyses to characterize their structural, morphological, optical, and electrical properties, respectively. XRD analysis demonstrated the growth of polycrystalline and cubic CdO with preferential orientation along the (111) plane. Sn-doping shifted the XRD peaks slightly towards a higher Bragg angle and increased the band gap of CdO thin films. Variation in doping concentration also affected the morphology of the films. Optimum Sn-doping increased the electrical conductivity of CdO thin films. Furthermore, to the best of our knowledge, the photoresponse analyses of the fabricated un-doped and doped n-CdO/p-Si heterostructures were performed for the first time in this study.
Of the various methods explored for the synthesis of nanoparticles, biogenesis of silver nanoparticles (AgNPs) received great attention due to their versatile properties. In this report, Daucus carota extract was used for the synthesis of AgNPs and ceftriaxone was conjugated with AgNPs to enhance their antimicrobial efficacy. The conjugated and unconjugated AgNPs were characterized by adopting UV-Vis spectroscopy, FTIR, AFM, DLS, and TEM, which revealed the SPR peak at 420 nm and spherical shaped nanoparticles of 20 nm size, respectively. The antimicrobial efficacies of the unconjugated AgNPs and ceftriaxone-conjugated AgNPs were tested against ceftriaxone-resistant human pathogens, Bacillus cereus, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The ceftriaxone-conjugated AgNPs showed high inhibitory action (23 mm) than the unconjugated AgNPs (18 mm) at the concentration of 50 μg/mL. Both the unconjugated and ceftriaxone-conjugated AgNPs were found to be non-toxic on EAC cells at 50 μg/mL. The dose-dependent cytotoxic activities were observed on increasing the concentration of the AgNPs. The ceftriaxone-conjugated AgNPs showed high activity than the unconjugated AgNPs. The enhanced activity could be useful to treat ceftriaxone-resistant human pathogens.
Unlike the wild type, the mutant Aspergillus carbonarius synthesized a yellow pigment, partially saturated canthaxanthin (PSC) when the growth medium acidified to low pH. Since the pigment found pharmaceutical applications, the possible mechanism involved in its ability to grow at extreme acidic conditions is described. To understand the mutation in the pathway, specific inhibitors affecting carotenoid biosynthesis were used in the medium and PSC synthesis and cell integrity were studied. Results suggested that the possible occurrence of mutation in the isoprenoid pathway for higher production of carotenoid as well as ergosterol caused the mutant to grow in extremely acidic conditions. The results also suggested that the flow of carbon for sterol biosynthesis and that of carotenoids are dependent. The deposition of carotenoids and ergosterol in the cell membrane causing the cells to maintain pH homeostasis under the acidic growth conditions is of significant importance. In A. carbonarius, understanding the cause of stress induced PSC accumulation is essential for efficient expression and production of the pharmaceutically significant carotenoid and this will further facilitate research into the role of carotenoids in stress tolerance of other filamentous fungi.
Wireless sensor networks (WSNs) have a worldwide attraction because of its increasing popularity. The key enablers for the Internet of Things (IoT) are WSN, which plays an important role in future by collecting information through the cloud. Fog Computing, the latest innovations, connects sensor-based IoT devices to the cloud. Fog Computing is a decentralized computing infrastructure in which the data, compute, storage, and applications are distributed efficiently between the data source and the cloud. The main aim of Fog Computing is to reduce the amount of data transported to the cloud and hence increase the efficiency. The knowledge-upgraded IoT devices will be embedded with a piece of software into it, which can able to understand the Distributed Denial of Service (DDoS). Such attacks are not forwarded to the cloud and thus the cloud server down problem is avoided. The IoT devices enabled with such knowledge is connected together to form a Connected Dominating Set (CDS). The data routed through only such IoT devices will be directly connected to the cloud. The CDS-based approach reduces the search for a minimum group of IoT devices called nodes, thus forming the backbone network. Various CDS algorithms have been developed for constructing CDSs with minimum number of nodes. However, most of the research work does not focus on developing a CDS based on application and requirement. In this chapter, a Gateway-based Strategic CDS (GWS-CDS) is constructed based on strategy and communication range. Here, any node in the network assigned a critical communication range, which is in a strong neighbourhood and which is within the communication range of more than one network, will be selected as the starting node, instead of the node with maximum connectivity. If a node is not within a critical communication range, then the following factors will be increased: the number of nodes that locally compete over a shared channel, access delay, network throughput and network partitioning. The other nodes for CDS construction are selected based on density and velocity. The focus of this research work was to construct a CDS in heterogeneous networks. The algorithm was tested with respect to three metrics—average CDS node size, average CDS Edge Size and average hop count per path. Simulation results showed that the proposed algorithm was better when compared to the existing algorithms.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
301 members
Sumit Singh
  • Department of Chemical Engineering
  • Department of Mathematics
Kumar Durairaj
  • Department of Electronics and Communication Engineering
Sukumaran Venkatachalam
  • Department of Biotechnology
Jeyasimman Duraisamy
  • Department of Mechanical Engineering
Tanjore, India