Recent PublicationsView all

  • [Show abstract] [Hide abstract]
    ABSTRACT: Unlabelled: Organophosphates (OPs) are widely used in agriculture. Many studies have investigated the capability of personal protective equipment (PPE) to reduce chemical exposure; however, investigations into the protective effect of 'every-day' clothing are rare. The purpose of this study was to investigate the protective effect of 'every-day' clothing against dermal exposure and to measure early decontamination of skin following exposure to chlorpyrifos and dichlorvos. Using human skin in vitro, absorption of (14)C-labelled chlorpyrifos (500 ng/cm(2)), was shown to be significantly reduced when applied to clothed skin (cotton shirt), regardless of application vehicle (isopropanol (IPA) or propylene glycol (PG)). The majority of applied dose was retained within the clothing after 4 h exposure. Significant reduction in absorption of chlorpyrifos (in PG) was seen through clothed skin when supplemented with skin decontamination at 4 h, compared with clothed skin decontaminated after 24 h, however, this was not observed with IPA. Absorption of dichlorvos (5 μg/cm(2)) was greater through unclothed skin than chlorpyrifos for all vehicles (IPA, isopropyl myristate (IPM) and PG). Significant reduction in absorption was observed when decontaminating clothed skin at 30 min, compared with decontamination at 24 h (post-exposure) for all vehicles. Result: indicate that 'every-day' clothing is effective at reducing exposure to chemicals in contact with skin. Washing the skin surface immediately following removal of exposed clothing can further reduce exposure, depending on the properties of the chemical and vehicle applied.
    No preview · Article · Jun 2014 · Toxicology Letters
  • [Show abstract] [Hide abstract]
    ABSTRACT: To date, there has been little research investigating low-level human exposure to chemicals, and so the aim of this study was to examine the percutaneous penetration of organophosphates (dichlorvos and chlorpyrifos) using low-level exposure scenarios in vitro. Dermal absorption of chlorpyrifos applied in different vehicles was measured at 0, 4, 8 and 24hours, after dose application for 4 and 24hour exposure (finite dose, 500ng/cm(2)) in isopropanol (IPA), isopropyl myristate (IPM) and propylene glycol (PG). Dichlorvos was applied to the skin for 24hours (infinite dose, 1mg/cm(2) and 10mg/cm(2), finite dose, 5μg/cm(2)) using the same vehicles. Human skin was mounted in flow through diffusion cells ith minimum essential medium eagle pH. 7.4 (supplemented with 2% BSA) as receptor fluid. Following exposure, the skin surface dose was removed by tissue swabbing, the stratum corneum removed by sequential tape stripping, and the skin digested prior to scintillation counting (chlorpyrifos), or GC/MS analysis (dichlorvos). Dermal absorption of chlorpyrifos was greatest following application in PG (19.5% of dose), when compared with absorption from IPA and IPM vehicles (10.3% and 1.9% absorbed respectively). However, dichlorvos showed greater dermal absorption than chlorpyrifos from all vehicles used, with greatest absorption from the IPA vehicle (38.6% absorbed). Although dichlorvos exhibited a short lag time (0.6 hours from IPA and IP vehicles, and 0.4 hours from PG), chlorpyrifos displayed greater propensity to accumulate in the stratum corneum and epidermis/dermis. These results demonstrate that prompt skin surface decontamination would be required for both dichlorvos and chlorpyrifos (and chemicals with similar properties) in the event of skin contact. The magnitude of the skin reservoir formed with chlorpyrifos was time dependent, therefore prompt decontamination of this and similar chemicals would be required to reduce delayed systemic absorption.
    No preview · Article · Jun 2014 · Toxicology Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Consumption of seafood containing the phytoplankton-derived toxin domoic acid (DOM) causes neurotoxicity in humans and in animals. It has been reported that DOM-induced symptoms may be more severe in men than women, but to date the effect of sex on DOM-induced effects in adults is not known. We investigated sex differences in DOM-induced effects in adult rats. Since low level exposure is of greatest relevance to human health (due to DOM regulatory limit), we examined the effects of low level exposure. Adult male and female Sprague Dawley rats were administered a single intraperitoneal injection of DOM (0, 1.0, 1.8mg/kg). Behaviour was monitored for 3hours and immunohistochemistry in the dorsal hippocampus and olfactory bulb was also examined. DOM increased locomotor and grooming activity, compared to vehicle group. DOM exposure also significantly increased stereotypic behaviours and decreased phosphorylated cAMP response element-binding protein immunoreactivity (pCREB-IR). There was no effect of sex on the magnitude of the behavioural responses, but the onset of DOM-induced locomotor activity and ear scratches was quicker in females than in males. Mixed effect modelling revealed the predicted peak in locomotor activity in response to DOM was also quicker in females than in males. Severe toxicity was evident in 2/7 male rats and 0/8 female rats dosed with 1.8mg/kg DOM. These data suggest that males exposed to low level DOM may be more susceptible to severe neurotoxicity, whereas females are affected more quickly. Understanding sex differences in DOM-induced neurotoxicity may contribute to future protective strategies and treatments.
    Full-text · Article · Oct 2012 · NeuroToxicology
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.