National Geographic Society
  • Washington, D.C., United States
Recent publications
Osa Peninsula in remote southwest Costa Rica harbors 2.5% of global terrestrial biodiversity in only 1,200 km ² and has the largest remaining tract of Pacific lowland wet forest in Mesoamerica. However, little is known about the marine ecosystems of this diverse region. Much of the coastline consists of soft sediment exposed to strong wave action. Three major hard bottom habitat types define this region, including: 1) coral reefs around Isla del Caño Biological Reserve, a no-take marine protected area (MPA) of 52 km ² , 2) coastal rocky reefs and islets along the peninsula, including Corcovado National Park, and 3) submerged pinnacles just outside the Isla del Caño MPA. Average coral cover at Isla del Caño was 21%, composed primarily of Porites lobata and Pocillopora elegans . In contrast, coastal rocky reefs were dominated by turf algae (39.8%) and macroalgae (20.7%) with low coral cover (1.1%). Submerged pinnacles were dominated by crustose coralline algae (33.3%) and erect coralline algae (25.7%). Fish assemblage characteristics (species richness, abundance, biomass) were significantly higher at the pinnacles compared to the other habitats and was dominated by schooling species such as Haemulon steindachneri , and the herbivores Kyphosus ocyurus , and Acanthurus xanthopterus . Top predators, primarily Triaenodon obesus , Caranx sexfasciatus , and Lutjanus argentimaculatus , were also most abundant at these pinnacles and accounted for the largest differences in fish trophic structure among habitats. Despite Isla del Caño being fully protected from fishing, biomass was similar to fished areas along the coast and lower than the adjacent submerged pinnacles outside the reserve. Similarly, Corcovado National Park includes 20.3 km ² of no-take MPAs; however, there is limited enforcement, and we noted several instances of fishing within the park. The unique configuration of healthy offshore coral reefs and pinnacles connected to coastal habitats provides corridors for many species including large predators such as sharks and other marine megafauna, which warrants additional protection.
Isolated coral reef habitats are unique systems to study the natural dynamics of coral traits and their natural acclimatization, adaptation, and recovery from global-scale stressors such as thermally induced bleaching events. This study evaluates the spatial and temporal changes in coral community attributes (diversity, live cover, and coral assemblage structure) over 14 years (2005–2019) at Clipperton, an extremely remote Eastern Tropical Pacific (ETP) atoll. The atoll exhibited overall high coral cover (~ 50–60%) dominated by massive species (Porites spp.), yet we observed large variation (44–56%) in coral community attributes among survey years (2005, 2016, 2019) with depth explaining most of the variation. Live coral cover increased in 2019 after a severe thermal stress event (El Niño, 2015–2016) and many tropical cyclones, which also caused a shift in assemblage structure from branching Pocillopora to massive Porites in the shallower reef zones, resulting in a less well-defined depth gradient. These changes in coral assemblage structure may have long-term effects on the configuration of the physical reef framework of the well-conserved coral reef ecosystems at Clipperton and consequently may alter the ecological functionality of one of the most important biogeographic stepping stones in the central Pacific and ETP regions.
Employed for over a century, the traditional way of monitoring sea level variability by tide gauges – in combination with modern observational techniques like satellite altimetry – is an inevitable ingredient in sea level studies over the climate scales and in coastal seas. The development of the instrumentation, remote data acquisition, processing, and archiving in the last decades has allowed the extension of the applications to a variety of users and coastal hazard managers. The Mediterranean and Black seas are examples of such a transition – while having a long tradition of sea level observations with several records spanning over a century, the number of modern tide gauge stations is growing rapidly, with data available both in real time and as a research product at different time resolutions. As no comprehensive survey of the tide gauge networks has been carried out recently in these basins, the aim of this paper is to map the existing coastal sea level monitoring infrastructures and the respective data availability. The survey encompasses a description of major monitoring networks in the Mediterranean and Black seas and their characteristics, including the type of sea level sensors, measuring resolutions, data availability, and existence of ancillary measurements, altogether collecting information about 240 presently operational tide gauge stations. The availability of the Mediterranean and Black seas sea level data in the global and European sea level repositories has been also screened and classified following their sampling interval and level of quality check, pointing to the necessity of harmonization of the data available with different metadata and series in different repositories. Finally, an assessment of the networks' capabilities for their use in different sea level applications has been done, with recommendations that might mitigate the bottlenecks and ensure further development of the networks in a coordinated way, a critical need in the era of human-induced climate changes and sea level rise.
Archaeological and genomic evidence suggest that modern Homo sapiens have roamed the planet for some 300–500 thousand years. In contrast, global human mitochondrial (mtDNA) diversity coalesces to one African female ancestor (“Mitochondrial Eve”) some 145 thousand years ago, owing to the ¼ gene pool size of our matrilineally inherited haploid genome. Therefore, most of human prehistory was spent in Africa where early ancestors of Southern African Khoisan and Central African rainforest hunter-gatherers (RFHGs) segregated into smaller groups. Their subdivisions followed climatic oscillations, new modes of subsistence, local adaptations, and cultural-linguistic differences, all prior to their exodus out of Africa. Seven African mtDNA haplogroups (L0–L6) traditionally captured this ancient structure—these L haplogroups have formed the backbone of the mtDNA tree for nearly two decades. Here we describe L7, an eighth haplogroup that we estimate to be ~ 100 thousand years old and which has been previously misclassified in the literature. In addition, L7 has a phylogenetic sublineage L7a*, the oldest singleton branch in the human mtDNA tree (~ 80 thousand years). We found that L7 and its sister group L5 are both low-frequency relics centered around East Africa, but in different populations (L7: Sandawe; L5: Mbuti). Although three small subclades of African foragers hint at the population origins of L5'7, the majority of subclades are divided into Afro-Asiatic and eastern Bantu groups, indicative of more recent admixture. A regular re-estimation of the entire mtDNA haplotype tree is needed to ensure correct cladistic placement of new samples in the future.
Aim: Understanding the variation in community composition and species abundances (i.e., β-diversity) is at the heart of community ecology. A common approach to examine β-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments. Location: Global. Time period: 1990 to present. Major taxa studied: From diatoms to mammals. Method: We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features. Results: Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances. Main conclusions: In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments.
Unlike satellite images, which are typically acquired and processed in near-real-time, global land cover products have historically been produced on an annual basis, often with substantial lag times between image processing and dataset release. We developed a new automated approach for globally consistent, high resolution, near real-time (NRT) land use land cover (LULC) classification leveraging deep learning on 10 m Sentinel-2 imagery. We utilize a highly scalable cloud-based system to apply this approach and provide an open, continuous feed of LULC predictions in parallel with Sentinel-2 acquisitions. This first-of-its-kind NRT product, which we collectively refer to as Dynamic World, accommodates a variety of user needs ranging from extremely up-to-date LULC data to custom global composites representing user-specified date ranges. Furthermore, the continuous nature of the product’s outputs enables refinement, extension, and even redefinition of the LULC classification. In combination, these unique attributes enable unprecedented flexibility for a diverse community of users across a variety of disciplines. Measurement(s)land use • land coverTechnology Type(s)deep learning Measurement(s) land use • land cover Technology Type(s) deep learning
We have more data about wildlife trafficking than ever before, but it remains underutilized for decision-making. Central to effective wildlife trafficking interventions is collection, aggregation, and analysis of data across a range of source, transit, and destination geographies. Many data are geospatial, but these data cannot be effectively accessed or aggregated without appropriate geospatial data standards. Our goal was to create geospatial data standards to help advance efforts to combat wildlife trafficking. We achieved our goal using voluntary, participatory, and engagement-based workshops with diverse and multisectoral stakeholders, online portals, and electronic communication with more than 100 participants on three continents. The standards support data-to-decision efforts in the field, for example indictments of key figures within wildlife trafficking, and disruption of their networks. Geospatial data standards help enable broader utilization of wildlife trafficking data across disciplines and sectors, accelerate aggregation and analysis of data across space and time, advance evidence-based decision making, and reduce wildlife trafficking.
Tuna Regional Fisheries Management Organizations (RFMOs) are responsible for conservation and sustainable management of transboundary tuna resources in Exclusive Economic Zones and Areas Beyond National Jurisdiction (ABNJ). The data collected and analyses performed by tuna RFMOs are one of the main sources of scientific information supporting the management, sustainable use and conservation of biodiversity in the ABNJ. An understanding of the scope and availability of data provided by tuna RFMOs is timely, given the expected establishment of a new legally binding high seas agreement to protect marine biodiversity in the ABNJ. We examined official catch statistics and stock assessments that are accessible in the public domain for the five tuna RFMOs, and evaluated their taxonomic, spatial and temporal resolution. We found that the Atlantic and Indian Ocean tuna RFMOs report catches for a greater number of taxa compared to Pacific RFMOs. There are substantial gaps in the taxonomic resolution of sharks and rays and ‘other teleosts’, and only about half of the reported global catches are georeferenced, despite existing mandatory requirements. Additionally, the estimation and reporting of discards in all tuna RFMOs remains incomplete. Tuna RFMOs have made progress in implementing stock assessments for a wide range of taxa including targeted species with high economic value but also functionally important non‐target species with lower economic value. However, assessments should be expanded to cover other bycatch species. We emphasize the importance of accessible and accurate statistics, for supporting the research and societal oversight needed under any future ABNJ biodiversity treaty.
Marine Life 2030 is a programme endorsed by the United Nations Decade of Ocean Science for Sustainable Development (the Ocean Decade) to establish a globally coordinated system that delivers knowledge of ocean life to those who need it, promoting human well-being, sustainable development, and ocean conservation. It is an open network to unite existing and new programmes into a co-designed, global framework to share information on methods, standards, observations, and applications. Goals include realizing interoperable information and transforming the observation and forecasting of marine life for the benefit of all people. Co-design, sharing local capacity, and coordination between users of ocean resources across regions is fundamental to enable sustainable use and conservation. A novel, bottom-up networking structure is now engaging members of the ocean community to address local issues, with Marine Life 2030 facilitating the linkage between groups across different regions to meet the challenges of the Ocean Decade. A variety of metrics, including those proposed by the Group on Earth Observations, will be used to track the success of the co-design process.
Marine protected areas (MPAs) are a key tool for achieving goals for biodiversity conservation and human well-being, including improving climate resilience and equitable access to nature. At a national level, they are central components in the U.S. commitment to conserve at least 30% of U.S. waters by 2030. By definition, the primary goal of an MPA is the long-term conservation of nature; however, not all MPAs provide the same ecological and social benefits. A U.S. system of MPAs that is equitable, well-managed, representative and connected, and includes areas at a level of protection that can deliver desired outcomes is best positioned to support national goals. We used a new MPA framework, The MPA Guide, to assess the level of protection and stage of establishment of the 50 largest U.S. MPAs, which make up 99.7% of the total U.S. MPA area (3.19 million km2). Over 96% of this area, including 99% of that which is fully or highly protected against extractive or destructive human activities, is in the central Pacific ocean. Total MPA area in other regions is sparse – only 1.9% of the U.S. ocean excluding the central Pacific is protected in any kind of MPA (120,976 km2). Over three quarters of the non-central Pacific MPA area is lightly or minimally protected against extractive or destructive human activities. These results highlight an urgent need to improve the quality, quantity, and representativeness of MPA protection in U.S. waters to bring benefits to human and marine communities. We identify and review the state of the science, including focal areas for achieving desired MPA outcomes and lessons learned from places where sound ecological and social design principles come together in MPAs that are set up to achieve national goals for equity, climate resilience, and biodiversity conservation. We recommend key opportunities for action specific to the U.S. context, including increasing funding, research, equity, and protection level for new and existing U.S. MPAs.
Machine learning has been advancing dramatically over the past decade. Most strides are human-based applications due to the availability of large-scale datasets, however, opportunities are ripe to apply this technology to more deeply understand non-human communication. We detail a scientific roadmap for advancing the understanding of communication of whales that can be built further upon as a template to decipher other forms of animal and non-human communication. Sperm whales, with their highly-developed neuroanatomical features, cognitive abilities, social structures, and discrete click-based encoding make for an excellent model for advanced tools that can be applied to other animals in the future. We outline the key elements required for the collection and processing of massive datasets, detecting basic communication units and language-like higher-level structures, and validating models through interactive playback experiments. The technological capabilities developed by such an undertaking hold potential for cross-applications in broader communities investigating non-human communication and behavioral research.
To address the global biodiversity crisis, standardized data that are rapidly obtainable through minimally invasive means are needed for documenting change and informing conservation within threatened and diverse systems, such as coral reefs. In this data paper, we describe 18S rRNA gene amplicon data (V1–V3 region) generated from samples collected to begin characterizing coral reef eukaryotic community composition at the Palmyra Atoll National Wildlife Refuge in the Central Pacific Ocean. Sixteen samples were obtained across four sample types: sediments from two sieved fractions (100–500 μm, n = 3; 500 μm-2 mm, n = 3) and sessile material scrapings (n = 3) from Autonomous Reef Monitoring Structures (ARMS) sampled in 2015, as well as seawater from 2012 (n = 7). After filtering and contaminant removal, 3,861 Amplicon Sequence Variants (ASVs) were produced from 1,062,238 reads. The rarefaction curves demonstrated adequate sampling depth, and communities grouped by sample type. The dominant orders across samples were polychaete worms (Eunicida), demosponges (Poecilosclerida), and bryozoans (Cheilostomatida). The ten most common orders in terms of relative abundance comprised ~60% of all sequences and 23% of ASVs, and included reef-building crustose coralline algae (CCA; Corallinophycidae) and stony corals (Scleractinia), two taxa associated with healthy reefs. Highlighting the need for further study, ~21% of the ASVs were identified as uncultured, incertae sedis , or not assigned to phylum or order. This data paper presents the first 18S rDNA survey at Palmyra Atoll and serves as a baseline for biodiversity assessment, monitoring, and conservation of this remote and pristine ecosystem.
Hallucinogenic plants and psychotropic stimulants performed an important role in the beliefs, rituals and divination practices in the ancient Andes. The aim of this article is to present the results of toxicological studies of two individuals immolated over 500 years ago during a capacocha ritual on the mountain of Ampato mountain in southern Peru. The capacocha was one of the most significant ceremonies carried out in the Inca Empire. During the ritual, the Incas sacrificed children and young women who were supposed to be beautiful and unblemished. The hair and nails of two Ampato mummies were examined using LC-MS/MS for the presence of coca alkaloids and metabolites (cocaine, benzoylecgonine, cocaethylene), mescaline, tryptamine, harmaline and harmine. The results of the study show that during the last weeks of the victims’ lives, they chewed on coca leaves and were intoxicated by ayahuasca, a beverage made primarily from the Banisteriopsis caapi. In modern medicine, the properties of harmine led to the use of ayahuasca in the treatment of depression. Chroniclers mentioned the importance of the victims’ moods. The Incas may have consciously used the antidepressant properties of Banisteriopsis caapi to reduce the anxiety and depressive states of the victims.
Mammals are the most encephalized vertebrates, with the largest brains relative to body size. Placental mammals have particularly enlarged brains, with expanded neocortices for sensory integration, the origins of which are unclear. We used computed tomography scans of newly discovered Paleocene fossils to show that contrary to the convention that mammal brains have steadily enlarged over time, early placentals initially decreased their relative brain sizes because body mass increased at a faster rate. Later in the Eocene, multiple crown lineages independently acquired highly encephalized brains through marked growth in sensory regions. We argue that the placental radiation initially emphasized increases in body size as extinction survivors filled vacant niches. Brains eventually became larger as ecosystems saturated and competition intensified.
Efforts to understand macroplastic pollution have primarily focused on coastal and marine environments to the exclusion of freshwater, terrestrial, and urban ecosystems. To better understand macroplastics in the environment and their sources, a dual approach examining plastic input and leakage can be used. In this study, litter aggregation pathways at 40 survey sites with varying ambient population counts in the Ganges River Basin were surveyed in pre- and postmonsoon seasons. We examine active litter leakage using transect surveys of on-the-ground items, in conjunction with assessments of single-use plastic consumer products at the point of sale. We find that sites with low populations have a significantly higher number of littered items per 1,000 people than those with mid to high populations. Over 75% of litter items were plastics or multimaterial items containing plastic, and tobacco products and plastic food wrappers were the most recorded items. There was no significant variation of litter densities pre- and postmonsoon. Most single-use plastic consumer products were manufactured in-country, but approximately 40% of brands were owned by international companies. Stratified sampling of active litter input and consumer products provides a rapid, replicable snapshot of plastic use and leakage.
1. Spearfishing, a common activity among Pacific Islanders, has been described to strongly modify the behaviour of target fish species. 2. Rapa Nui (Easter Island), a remote Chilean oceanic island, has suffered a serious decline in its nearshore fish stocks through overfishing. 3. In this study, the flight initiation distance (FID) of the Pacific rudderfish Kyphosus sandwicensis was measured at depths normally accessed by free divers and at deeper depths around Rapa Nui and the no-take Motu Motiro Hiva Marine Park (MMHMP). 4. The overall FID at MMHMP was significantly shorter compared with that recorded in shallow waters at Rapa Nui, but did not differ from the FIDs recorded in deeper waters at Rapa Nui. 5. The biomass of K. sandwicensis did not differ among study sites, but was significantly higher at deeper depths, supporting the hypothesis of depth refuge from fishing at Rapa Nui. 6. Based on these findings, spatial and technical management strategies are proposed to help conserve the nearshore fish populations, such as the establishment of no-take zones and the enhancement of regulatory frameworks for coastal fisheries. K E Y W O R D S artisanal fisheries management, fish behaviour, fish ecology, marine protected areas, Rapa Nui, spearfishing
Local, regional and global targets have been set to halt marine biodiversity loss. Europe has set its own policy targets to achieve Good Environmental Status (GES) of marine ecosystems by implementing the Marine Strategy Framework Directive (MSFD) across member states. We combined an extensive dataset across five Mediterranean ecoregions including 26 Marine Protected Areas (MPAs), their reference unprotected areas, and a no-trawl case study. Our aim was to assess if MPAs reach GES, if their effects are local or can be detected at ecoregion level or up to a Mediterranean scale, and which are the ecosystem components driving GES achievement. This was undertaken by using the analytical tool NEAT (Nested Environmental status Assessment Tool), which allows an integrated assessment of the status of marine systems. We adopted an ecosystem approach by integrating data from several ecosystem components: the seagrass Posidonia oceanica, macroalgae, sea urchins and fish. Thresholds to define the GES were set by dedicated workshops and literature review. In the Western Mediterranean, most MPAs are in good/high status, with P. oceanica and fish driving this result within MPAs. However, GES is achieved only at a local level, and the Mediterranean Sea, as a whole, results in a moderate environmental status. Macroalgal forests are overall in bad condition, confirming their status at risk. The results are significantly affected by the assumption that discrete observations over small spatial scales are representative of the total extension investigated. This calls for large-scale, dedicated assessments to realistically detect environmental status changes under different conditions. Understanding MPAs effectiveness in reaching GES is crucial to assess their role as sentinel observatories of marine systems. MPAs and trawling bans can locally contribute to the attainment of GES and to the fulfillment of the MSFD objectives. Building confidence in setting thresholds between GES and non-GES, investing in long-term monitoring, increasing the spatial extent of sampling areas, rethinking and broadening the scope of complementary tools of protection (e.g., Natura 2000 Sites), are indicated as solutions to ameliorate the status of the basin.
Mountain glacier systems are decreasing in volume worldwide yet relatively little is known about their upper reaches (>5000 m). Here we show, based on the world's highest ice core and highest automatic weather stations, the significant and increasing role that melting and sublimation have on the mass loss of even Mt. Everest's highest glacier (South Col Glacier, 8020 m). Estimated contemporary thinning rates approaching~2 m a −1 water equivalent (w.e.) indicate several decades of accumulation may be lost on an annual basis now that glacier ice has been exposed. These results identify extreme sensitivity to glacier surface type for high altitude Himalayan ice masses and forewarn of rapidly emerging impacts as Mt. Everest's highest glacier appears destined for rapid retreat. npj Climate and Atmospheric Science (2022) 5:7 ; https://doi.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
31 members
Spencer Wells
  • The Genographic Project
Aurora Elmore
  • Science and Exploration
Kyler Abernathy
  • Exploration Technology Lab
Whitney Goodell
  • Pristine Seas
Washington, D.C., United States