Muséum National d'Histoire Naturelle
  • Paris, Ile de France, France
Recent publications
Background The skull of placental mammals constitutes one of the best studied systems for phenotypic modularity. Several studies have found strong evidence for the conserved presence of two- and six-module architectures, while the strength of trait correlations (integration) has been associated with major developmental processes such as somatic growth, muscle-bone interactions, and tooth eruption. Among placentals, ant- and termite-eating (myrmecophagy) represents an exemplar case of dietary convergence, accompanied by the selection of several cranial morphofunctional traits such as rostrum elongation, tooth loss, and mastication loss. Despite such drastic functional modifications, the covariance patterns of the skull of convergently evolved myrmecophagous placentals are yet to be studied in order to assess the potential consequences of this dietary shift on cranial modularity. Results Here, we performed a landmark-based morphometric analysis of cranial covariance patterns in 13 species of myrmecophagous placentals. Our analyses reveal that most myrmecophagous species present skulls divided into six to seven modules (depending on the confirmatory method used), with architectures similar to those of non-myrmecophagous placentals (therian six modules). Within-module integration is also similar to what was previously described for other placentals, suggesting that most covariance-generating processes are conserved across the clade. Nevertheless, we show that extreme rostrum elongation and tooth loss in myrmecophagid anteaters have resulted in a shift in intermodule correlations in the proximal region of the rostrum. Namely, the naso-frontal and maxillo-palatine regions are strongly correlated with the oro-nasal module, suggesting an integrated rostrum conserved from pre-natal developmental processes. In contrast, the similarly toothless pangolins show a weaker correlation between the anterior rostral modules, resembling the pattern of toothed placentals. Conclusions These results reveal that despite some integration shifts related to extreme functional and morphological features of myrmecophagous skulls, cranial modular architectures have conserved the typical mammalian scheme.
A multi-analytical study has been undertaken to characterise wall paintings from the al-Qarawiyyin university in Fez, dating back to the 9th century and still in activity, with the aim of identifying the pigments used and going back to the painting techniques adopted by the Moroccan craftsmen of the time. The investigation crossed Raman and ATR-FTIR structural analyses along with XRF elemental ones, as well as colorimetric measurements. The colours and shades of six representative fragments collected during a recent excavation have been examined. Hence, red ochre (mainly hematite) was used to obtain brown-red colour, calcite for white, bistre for carbon-based black, while blue shades were achieved using azurite. Mixtures of pigments were created to widen the colour palette: cinnabar, minium and hematite were identified in orange hues while lapis lazuli and azurite were observed in grey-blue areas. The exploration of mortar layers revealed gypsum, gypsum/calcite and calcite type plasters. Furthermore, the observation of the morphological aspect of the interface between the plaster and the painting layer seems indicating that the lime-secco-painting skill had been the adopted painting technique.
In the context of climate change and sea-level rise, coastal realignment consists in reopening polders to marine waters to favor ‘nature-based’ mitigation measures. Such operations have consequences on biodiversity, which vary depending on the parameters studied and site features. In this study, a multimetric indicator aiming to evaluate and predict the potential ecological quality of sites undergoing a realignment operation was developed. This indicator is based on the combination of two tools, (i) a biological-capacity matrix to assess the importance of different habitats of a defined typology for taxonomical, patrimonial and functional parameters; (ii) habitat maps obtained by photointerpretation for past habitats, by machine learning using space-borne imagery for present habitats and by forecasting using submersion models for future habitats. The indicator is presented in the form of a radar chart, with each axis corresponding to one parameter of the biological-capacity matrix and highlighting its different values for different coastal-realignment scenarios or different time horizons.
Reconstructing the dispersal routes of pathogens can help identify the key drivers of their evolution and provides a basis for disease control. The cereal cyst nematode Heterodera avenae is one of the major nematode pests on cereals that can cause 10–90% crop yield losses worldwide. Through extensive sampling on wheat and grasses, the Chinese population of H. avenae is widely identified in virtually all wheat growing regions in China, with H1 being the predominant haplotype. The monoculture of wheat in north China might have been the key driver for the prevalence of H1 population, which should date no earlier than the Han Dynasty (202 BCE–220 CE). Molecular phylogenetic and biogeographic analyses of Chinese H. avenae suggest a Pleistocene northwest China origin and an ancestral host of grasses. We assume the prosperity of Heterodera in this region is a result of their favor cooler climate and various grass hosts, which only appeared after the uplift of Qinghai‐Tibetan Plateau and aridification of Inner Asia. Nematode samples from the current and historical floodplains show a significant role of the Yellow River in the distribution of Chinese H. avenae. Whereas mechanical harvesters that operate on an inter‐provincial basis suggest the importance in the transmission of this species in eastern China in recent times. This study highlights the role of environmental change, river dynamics, and anthropogenic factors in the origin and long‐distance dissemination of pathogens.
Oakleaf butterflies in the genus Kallima have a polymorphic wing phenotype, enabling these insects to masquerade as dead leaves. This iconic example of protective resemblance provides an interesting evolutionary paradigm that can be employed to study biodiversity. We integrated multi-omic data analyses and functional validation to infer the evolutionary history of Kallima species and investigate the genetic basis of their variable leaf wing patterns. We find that Kallima butterflies diversified in the eastern Himalayas and dispersed to East and Southeast Asia. Moreover, we find that leaf wing polymorphism is controlled by the wing patterning gene cortex, which has been maintained in Kallima by long-term balancing selection. Our results provide macroevolutionary and microevolutionary insights into a model species originating from a mountain ecosystem.
Primates rarely learn new vocalisations, but they can learn to use their vocalizations in different contexts. Such ‘vocal usage learning’, particularly in vocal sequences, is a hallmark of human language, but remains understudied in non-human primates. We assess usage learning in four wild chimpanzee communities of Taï and Budongo Forests by investigating population differences in call ordering of a greeting vocal sequence. Whilst in all groups, these sequences consisted of pant-hoots (long-distance contact call) and pant-grunts (short-distance submissive call), the order of the two calls differed across populations. Taï chimpanzees consistently commenced greetings with pant-hoots whereas Budongo chimpanzees started with pant-grunts. We discuss different hypotheses to explain this pattern and conclude that higher intra-group aggression in Budongo may have led to a local pattern of individuals signalling submission first. This highlights how within-species variation in social dynamics may lead to flexibility in call order production, possibly acquired via usage learning.
In epithelia, claudin proteins are important components of the tight junctions as they determine the permeability and specificity to ions of the paracellular pathway. Mutations in CLDN10 cause the rare autosomal recessive HELIX syndrome (Hypohidrosis, Electrolyte imbalance, Lacrimal gland dysfunction, Ichthyosis, and Xerostomia), in which patients display severe enamel wear. Here, we assess whether this enamel wear is caused by an innate fragility directly related to claudin-10 deficiency in addition to xerostomia. A third molar collected from a female HELIX patient was analyzed by a combination of microanatomical and physicochemical approaches (i.e., electron microscopy, elemental mapping, Raman microspectroscopy, and synchrotron-based X-ray fluorescence). The enamel morphology, formation time, organization, and microstructure appeared to be within the natural variability. However, we identified accentuated strontium variations within the HELIX enamel, with alternating enrichments and depletions following the direction of the periodical striae of Retzius. These markings were also present in dentin. These data suggest that the enamel wear associated with HELIX may not be related to a disruption of enamel microstructure but rather to xerostomia. However, the occurrence of events of strontium variations within dental tissues might indicate repeated episodes of worsening of the renal dysfunction that may require further investigations.
Polyhedrons, spheroids and bolas (PSBs) are present in lithic series from the Lower Palaeolithic onwards and are found in several regions of the world. Nevertheless, very little is known about them. We propose here to summarise, illustrate and discuss the current state of our knowledge about these artefacts. Based on the available data in the literature and on our observations of several collections, we set up a database comprising 169 Palaeolithic assemblages with PSBs. Thanks to the statistical analysis of these data, we aim to highlight potential relationships between PSB characteristics (e.g., quantity, raw material) and assemblage composition and context, according to regions and chrono-cultural attributions. We also aim to discuss the question of artefacts from possible independent local histories, especially in Northwest Europe, where these objects are scarce. Our study concludes that hard stones (stones with high resistance to a physical constraint) available locally were generally selected to produce PSBs. Soft sedimentary rocks are suitable for their manufacture, and were selected too, whereas siliceous materials were left aside. We hypothesise that the scarcity of PSBs in Northwest Europe could result from a combination of cultural and environmental factors: it could be part of a regional tradition, influenced by the abundance of siliceous materials in the environment. In this region where the lithic production is widely made of flint, even though other materials were available, objects made from hard stones are scarce, resulting in a toolkit with only rare PSBs and cleavers. Was flint too brittle for the functions of PSBs? Raw materials of PSBs are often similar to those of heavy-duty tools in assemblages, which could provide other clues about their functions (e.g., tasks requiring a resistance to shocks). It is possible that their raw materials partly conditioned their final shape. PSBs can comprise a wide variety of artefacts, that for some could have change of status (e.g., from cores to percussive tools), diffused, adapted but also reinvented over two million years.
In European and many African, Middle Eastern and southern Asian populations, lactase persistence (LP) is the most strongly selected monogenic trait to have evolved over the past 10,000 years1. Although the selection of LP and the consumption of prehistoric milk must be linked, considerable uncertainty remains concerning their spatiotemporal configuration and specific interactions2,3. Here we provide detailed distributions of milk exploitation across Europe over the past 9,000 years using around 7,000 pottery fat residues from more than 550 archaeological sites. European milk use was widespread from the Neolithic period onwards but varied spatially and temporally in intensity. Notably, LP selection varying with levels of prehistoric milk exploitation is no better at explaining LP allele frequency trajectories than uniform selection since the Neolithic period. In the UK Biobank4,5 cohort of 500,000 contemporary Europeans, LP genotype was only weakly associated with milk consumption and did not show consistent associations with improved fitness or health indicators. This suggests that other reasons for the beneficial effects of LP should be considered for its rapid frequency increase. We propose that lactase non-persistent individuals consumed milk when it became available but, under conditions of famine and/or increased pathogen exposure, this was disadvantageous, driving LP selection in prehistoric Europe. Comparison of model likelihoods indicates that population fluctuations, settlement density and wild animal exploitation—proxies for these drivers—provide better explanations of LP selection than the extent of milk exploitation. These findings offer new perspectives on prehistoric milk exploitation and LP evolution. Examination of archaeological pottery residues and modern genes suggest that environmental conditions, subsistence economics and pathogen exposure may explain selection for lactase persistence better than prehistoric consumption of milk.
A clear understanding of past weaning practices can provide invaluable insights into social issues such as infant care, fertility rate, and demographic patterns in past societies. This study presents the first archeological research employing compound specific isotope analysis (CSIA) for the reconstruction of past weaning practices. Weaning practices of two Middle Neolithic communities in the Paris Basin region: Balloy (BLR) and Vignely (VPB), are evaluated by combining previously published bone collagen stable carbon, nitrogen, and sulfur (n = 66) isotope analysis with new compound specific carbon and nitrogen isotope compositions of bone collagen (n = 10). Our results demonstrate that the diets of individuals from BLR and VPB likely incorporated freshwater resources. The signals of freshwater resources consumption are even stronger among subadults, suggesting that freshwater resources were used as weaning food at these sites. The implications of our result are threefold. Currently many CSIA studies in archeology only involve either carbon or nitrogen. Our data shows that it is important to conduct CSIA on both carbon and nitrogen for a more integrated picture. Secondly, our data demonstrates that the use of a protein‐based weaning food—instead of a starch‐based weaning food (such as cereal gruel)—was likely more prevalent among the Middle Neolithic communities in the Paris Basin Region than previously thought. The finding thus prompts a rethinking of the role of protein‐based weaning food in other archeological contexts. Lastly, the common assumption that weaning foods and adult diets share similar isotopic compositions can be problematic, as the use of protein‐based, high trophic‐level weaning foods can skew the δ15N weaning curve and produce an erroneously late estimation for weaning ages.
A new planthoppers genus and species of CixiidaeOecleini, Coframalaxius bletteryi gen. nov. sp. nov. newly discovered in a cave near Nice in southern France, is described. Molecular analysis confirms the morphology-based classification of Coframalaxius as sister to Trigonocranus within the Oecleni. Several morphological characters are further discussed. A double-grasping coxo-femoral and femoro-tibial system is regarded as apomorphic for the oecline taxa and would allow the nymph to firmly grab the roots and rootlets on which it feeds or use to progress in the soil. Wing vein patterns are discussed in the Cixiidae: 1) for the forewings, Oecleini belong to the trifid type of the anterior MP branch, leading to the reinterpretation of some recently described Neotropical species, 2) for the hindwing, four connection types (U-, V-, Y- and I-types) between MP and CuA are described. Oecleini belongs to I-type with a complete fusion of MP 3+4 with CuA 1 . Although the area where the cave is located is well-studied with respect to its regularly sampled epigean fauna for many years, the taxon is new to science, highlighting its probable completely hypogean life cycle and leading to consider Coframalaxius bletteryi as an eutroglophile species.
The global importance of mesopelagic fish is increasingly recognised, but they remain poorly studied. This is particularly true in the Southern Ocean, where mesopelagic fishes are both key predators and prey, but where the remote environment makes sampling challenging. Despite this, multiple national Antarctic research programs have undertaken regional sampling of mesopelagic fish over several decades. However, data are dispersed, and sampling methodologies often differ precluding comparisons and limiting synthetic analyses. We identified potential data holders by compiling a metadata catalogue of existing survey data for Southern Ocean mesopelagic fishes. Data holders contributed 17,491 occurrence and 11,190 abundance records from 4780 net hauls from 72 different research cruises. Data span across 37 years from 1991 to 2019 and include trait-based information (length, weight, maturity). The final dataset underwent quality control processes and detailed metadata was provided for each sampling event. This dataset can be accessed through Zenodo. Myctobase will enhance research capacity by providing the broadscale baseline data necessary for observing and modelling mesopelagic fishes.
The origins of Homo, as well as the diversity and biogeographic distribution of early Homo species, remain critical outstanding issues in paleoanthropology. Debates about the recognition of early Homo, first appearance dates, and taxonomic diversity within Homo are particularly important for determining the role that southern African taxa may have played in the origins of the genus. The correct identification of Homo remains also has implications for reconstructing phylogenetic relationships between species of Australopithecus and Paranthropus, and the links between early Homo species and Homo erectus. We use microcomputed tomography and landmark-free deformation-based three-dimensional geometric morphometrics to extract taxonomically informative data from the internal structure of postcanine teeth attributed to Early Pleistocene Homo in the southern African hominin-bearing sites of Sterkfontein, Swartkrans, Drimolen, and Kromdraai B. Our results indicate that, from our sample of 23 specimens, only 4 are unambiguously attributed to Homo, 3 of them coming from Swartkrans member 1 (SK 27, SK 847, and SKX 21204) and 1 from Sterkfontein (Sts 9). Three other specimens from Sterkfontein (StW 80 and 81, SE 1508, and StW 669) approximate the Homo condition in terms of overall enamel-dentine junction shape, but retain Australopithecus-like dental traits, and their generic status remains unclear. The other specimens, including SK 15, present a dominant australopith dental signature. In light of these results, previous dietary and ecological interpretations can be reevaluated, showing that the geochemical signal of one tooth from Kromdraai (KB 5223) and two from Swartkrans (SK 96 and SKX 268) is consistent with that of australopiths.
Quantifying the frequency of shifts to new host plants within diverse clades of specialist herbivorous insects is critically important to understand whether and how host shifts contribute to the origin of species. Oak gall wasps (Hymenoptera: Cynipidae: Cynipini) comprise a tribe of ~1000 species of phytophagous insects that induce gall formation on various organs of trees in the family Fagacae —primarily the oaks (genus Quercus; ~435 sp). The association of oak gall wasps with oaks is ancient (~50 my), and most oak species are galled by one or more gall wasp species. Despite the diversity of both gall wasp species and their plant associations, previous phylogenetic work has not identified the strong signal of host plant shifting among oak gall wasps that has been found in other phytophagous insect systems. However, most emphasis has been on the Western Palearctic and not the Nearctic where both oaks and oak gall wasps are considerably more species rich. We collected 86 species of Nearctic oak gall wasps from most of the major clades of Nearctic oaks and sequenced >1000 Ultra Conserved Elements (UCEs) and flanking sequences to infer wasp phylogenies. We assessed the relationships of Nearctic gall wasps to one another and, by leveraging previously published UCE data, to the Palearctic fauna. We then used phylogenies to infer historical patterns of shifts among host tree species and tree organs. Our results indicate that oak gall wasps have moved between the Palearctic and Nearctic at least four times, that some Palearctic wasp clades have their proximate origin in the Nearctic, and that gall wasps have shifted within and between oak tree sections, subsections, and organs considerably more often than previous data have suggested. Given that host shifts have been demonstrated to drive reproductive isolation between host-associated populations in other phytophagous insects, our analyses of Nearctic gall wasps suggest that host shifts are key drivers of speciation in this clade, especially in hotspots of oak diversity. Though formal assessment of this hypothesis requires further study, two putatively oligophagous gall wasp species in our dataset show signals of host-associated genetic differentiation unconfounded by geographic distance, suggestive of barriers to gene flow associated with the use of alternative host plants.
Worldwide, novel species of pathogens are frequently reported in cultivated and wild macroalgae. Alongside the rapid growth of the seaweed industry, diseases and pests have become an area of significant concern for cultivation and conservation of wild stocks alike: yield and quality of a crop might be greatly affected and sometimes, the losses due to diseases and pests are such that they jeopardize the economic viability of cultivation. Disease management methods and biosecurity are still in their infancy, especially as disease-causing organisms are most often poorly known, with limited options for robust and rapid diagnostics. Here, we describe a community-based, multilingual initiative that aims to foster the description of disease-causing organisms relevant to the seaweed industry worldwide and to underpin the conservation of wild seaweed genetic resources.
Here, we present the largest, global dataset of Lepidopteran traits, focusing initially on butterflies (ca. 12,500 species records). These traits are derived from field guides, taxonomic treatments, and other literature resources. We present traits on wing size, phenology,voltinism, diapause/overwintering stage, hostplant associations, and habitat affinities (canopy, edge, moisture, and disturbance). This dataset will facilitate comparative research on butterfly ecology and evolution and our goal is to inspire future research collaboration and the continued development of this dataset.
Insects are the most diverse group of animals on Earth, but their small size and high diversity have always made them challenging to study. Recent technological advances have the potential to revolutionise insect ecology and monitoring. We describe the state of the art of four technologies (computer vision, acoustic monitoring, radar, and molecular methods), and assess their advantages, current limitations, and future potential. We discuss how these technologies can adhere to modern standards of data curation and transparency, their implications for citizen science, and their potential for integration among different monitoring programmes and technologies. We argue that they provide unprecedented possibilities for insect ecology and monitoring, but it will be important to foster international standards via collaboration.
Objectives To investigate the association of exposure to per- and polyfluoroalkyl substances (PFAS) during early pregnancy with markers of the maternal thyroid system. Methods Serum concentrations of seven PFAS as well as thyroid stimulating hormone (TSH), free and total thyroxine (FT4 and TT4), free and total triiodothyronine (FT3 and TT3) were measured in pregnant women in early pregnancy in the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy (SELMA) study. Outcomes were concentrations of TSH and thyroid hormones, FT4/FT3 or TT4/TT3 ratios, TSH/FT4 ratio as a marker of the negative feedback loop, TT4/FT4 or TT3/FT3 ratios as markers of the binding of thyroid hormones to binding proteins. Results The study population comprised 2,008 women with median (95% range) gestational age of 10 (6-14) weeks. There was no association between PFAS and TSH. Higher PFNA, PFDA, PFHpA and PFOA levels were associated with a higher FT4 (largest effect estimate for PFDA: β [95% CI]: 0.27 [0.10 to 0.45], P=0.002). Higher PFUnDA levels, but no other PFAS, were associated with a lower FT3 (β [95% CI]: -0.05 [-0.09 to -0.01], P=0.005). Higher PFUnDA levels were associated with lower TT4 (β [95% CI]: -1.58 [-3.07 to -0.09]) and there was an inverted U-shaped association of PFOS with TT4 (P=0.03). Higher PFDA, PFUnDA, PFHpA levels were associated with a lower TT3. Overall, higher PFAS concentrations were associated with a higher FT4/FT3 ratio and a higher TT4/TT3 ratio. There was no association of PFAS with the TSH/FT4 ratio. Higher concentrations of several PFAS were associated with lower TT4/FT4 and TT3/FT3 ratios. Conclusions These findings translate results from experimental studies suggesting that exposure to PFAS may interfere with the thyroid system during pregnancy. Further experimental studies should take into account human evidence to better understand the potential underlying mechanisms of thyroid disruption by PFAS exposure.
Eukaryotic genomes vary in terms of size, chromosome number, and genetic complexity. Their temporal organization is complex, reflecting coordination between DNA folding and function. Here, we used fused karyotypes of budding yeast to characterize the effects of chromosome length on nuclear architecture. We found that size-matched megachromosomes expand to occupy a larger fraction of the enlarged nucleus. Hi-C maps reveal changes in the three-dimensional structure corresponding to inactivated centromeres and telomeres. De-clustering of inactive centromeres results in their loss of early replication, highlighting a functional correlation between genome organization and replication timing. Repositioning of former telomere-proximal regions on chromosome arms exposed a subset of contacts between flocculin genes. Chromatin reorganization of megachromosomes during cell division remained unperturbed, and it revealed that centromere-rDNA contacts in anaphase, extending over 0.3 Mb on wild-type chromosome, cannot exceed ∼1.7 Mb. Our results highlight the relevance of engineered karyotypes to unveiling relationships between genome organization and function.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
1,360 members
Barbara Demeneix
  • UMR 7221, Dept RDDM
Arnaud Catherine
  • Département Régulations, développement et diversité moléculaire
Chakib Djediat
  • Département Régulations, développement et diversité moléculaire
Annemarie Ohler
  • Department of Systematics and Evolution
57, rue Cuvier, 75005, Paris, Ile de France, France
Head of institution
Bruno David, PDG