Kyung Hee University
  • Seoul, South Korea
Recent publications
There has been a lot of basic and clinical research on Alzheimer's disease (AD) over the last 100 years, but its mechanisms and treatments have not been fully clarified. Despite some controversies, the amyloid-beta hypothesis is one of the most widely accepted causes of AD. In this study, we disclose a new amyloid-beta plaque disaggregating agent and an AD brain-targeted delivery system using porous silicon nanoparticles (pSiNPs) as a therapeutic nano-platform to overcome AD. We hypothesized that the negatively charged sulfonic acid functional group could disaggregate plaques and construct a chemical library. As a result of the in vitro assay of amyloid plaques and library screening, we confirmed that 6-amino-2-naphthalenesulfonic acid (ANA) showed the highest efficacy for plaque disaggregation as a hit compound. To confirm the targeted delivery of ANA to the AD brain, a nano-platform was created using porous silicon nanoparticles (pSiNPs) with ANA loaded into the pore of pSiNPs and biotin-polyethylene glycol (PEG) surface functionalization. The resulting nano-formulation, named Biotin-CaCl2-ANA-pSiNPs (BCAP), delivered a large amount of ANA to the AD brain and ameliorated memory impairment of the AD mouse model through the disaggregation of amyloid plaques in the brain. This study presents a new bioactive small molecule for amyloid plaque disaggregation and its promising therapeutic nano-platform for AD brain-targeted delivery.
Loliolide (LL), a naturally occurring monoterpenoid lactone isolated from Vicia tenuifolia Roth, can exhibit numerous pharmacological effects such as those related to anti-Parkinson, anti-oxidant, anti-cholinesterase, and anti-depressant. Epithelial-mesenchymal transition (EMT) plays a pivotal role in regulating tumor metastasis. CXCR4 and CXCR7 are G-protein-coupled receptors (GPRs), which can be stimulated by CXCL12. CXCL12/CXCR4/CXCXR7 axis can cause activation of multiple pathways including MAPKs, JAK/STAT pathway, and manganese superoxide dismutase (MnSOD) signaling. These events can initiate EMT process and induce cell invasion and migration. Here, we investigated whether LL can modulate the CXCR4 and CXCR7 and EMT process in colon cancer and breast cancer cells. We found that LL suppressed levels of CXCR4 and CXCR7, and exerted an inhibitory effect on these chemokines even after stimulation by CXCL12. LL suppressed expression of MnSOD and mesenchymal markers, whereas induced epithelial markers. In addition, LL significantly attenuated cellular invasion, migration, and metastasis. We noted that LL inhibited CXCR4/7 and EMT process even after stimulation of CXCL12 and MnSOD overexpression. Therefore, in this study, we provide evidences that targeting CXCR4/7 and MnSOD could inhibit the invasion, migration, and metastasis of cancer cells as well as negatively regulate the EMT process. Overall, our study suggested that LL might act as a potent suppressor of EMT process against colon and breast cancer cells.
Membrane bioreactor (MBR) systems are one of the most widely used wastewater treatment processes for various municipal and industrial waste streams. The present study aimed to advance the understanding of ecologically important keystone taxa that play an important role in full-scale MBR systems. A machine-learning (ML) modeling framework based on microbiome data was developed to successfully predict, with an average accuracy of >91.6%, the operational characteristics of three representative full-scale wastewater systems: an MBR, conventional activated sludge system, and a sequencing batch reactor. ML-based feature-importance analysis identified Ferruginibacter as a keystone organism in the MBR system. The phylogeny and known ecophysiology of members of Ferruginibacter supported their role in metabolizing complex organic polymers (e.g., extracellular polymeric substances) in MBR systems characterized by high concentrations of mixed liquor suspended solids and a high solid retention time. ML regression modeling also revealed temporal patterns of Ferruginibacter in response to water temperature. ML modeling was thus successfully employed in the present study to investigate complex/non-linear relationships between keystone taxa and environmental conditions that cannot be detected using conventional approaches. Overall, our microbiome-data-enabled ML modeling approach represents a methodological advance for identifying keystone taxa and their complex ecological interactions, which has implications for sustainable and predictive management of MBR systems.
Cholera is a highly contagious and lethal waterborne disease induced by an infection with Vibrio cholerae (V. cholerae) secreting cholera toxin (CTx). Cholera toxin subunit B (CTxB) from the CTx specifically binds with monosialo-tetra-hexosyl-ganglioside (GM1) found on the exterior cell membrane of an enterocyte. Bioinspired by the pathological process of CTx, we developed an electrochemical biosensor with GM1-expressing Caco-2 cell membrane (CCM) on the electrode surface. Briefly, the electrode surface was functionalized with CCM using the vesicle fusion method. We determined the CTxB detection performances of Caco-2 cell membrane-coated biosensor (CCB) using electrochemical impedance spectroscopy (EIS). the CCB had an excellent limit of detection of ∼11.46 nM and a detection range spanning 100 ng/mL - 1 mg/mL. In addition, the CCB showed high selectivity against various interfering molecules, including abundant constituents of intestinal fluid and various bacterial toxins. The long-term stability of the CCBs was also verified for 3 weeks using EIS. Overall, the CCB has excellent potential for practical use such as point-of-care and cost-effective testing for CTxB detection in developing countries.
Background: Vascular dementia (VaD) is the second most common type of dementia after Alzheimer's disease. Currently, no FDA-approved drugs are available for the treatment of VaD. Artemisia annua Linné (AA) is known to have antioxidant properties, but its effects and mechanisms of action on cognitive impairment are still unknown. Purpose: In this study, the improvement in cognitive impairment by AA in terms of protection against oxidative stress, neuroinflammation, and preservation of the integrity of the neurovascular unit (NVU) was assessed in an animal model of VaD with bilateral common carotid artery occlusion (BCCAO). Methods: Eight-week-old male Wistar rats were allowed to adapt for four weeks, and BCCAO was induced at 12 weeks of age. The rats were randomly assigned into four groups, with seven rats in each group: sham group without BCCAO, VaD group that received oral administration of distilled water after BCCAO surgery, and two AA groups that received oral administration of 150 mg/kg or 750 mg/kg AA after BCCAO surgery for 8 weeks. Nine weeks after BCCAO surgery, the cognitive function of the rats was evaluated and accumulated oxidative stress was assessed by immunohistochemistry, immunofluorescence, and western blotting. Damage to the components of the NVU was evaluated, and sirtuin (Sirt) 1 and 2 expression and nuclear factor-erythrocyte 2-associated factor 2 (Nrf2)/Kelch-like ECH-associated protein1 (Keap1) activation were investigated to assess the reduction in cell signaling and antioxidant pathways. Results: BCCAO-induced cerebral perfusion decreased memory function and induced neuroinflammation and oxidative stress. But AA treatment mitigated cognitive impairment and reduced neuroinflammation and oxidative stress caused by chronic cerebral hypoperfusion. AA extracts activated the Nrf2/Keap1/activating antioxidant response elements pathway and maintained Sirt 1 and 2, subsequently leading to the maintenance of neurons, improved construct of microvessels, increased platelet-derived growth factor receptor beta, and platelet-endothelial cell adhesion molecule-1 associated with the blood-brain barrier integrity. Conclusion: AA is effective in alleviating BCCAO-induced cognitive decline and its administration may be a useful therapeutic approach for VaD.
To satisfy the expected plethora of computation-heavy applications, federated edge learning (FEEL) is a new paradigm featuring distributed learning to carry the capacities of low-latency and privacy-preserving. To further improve the efficiency of wireless data aggregation and model learning, over-the-air computation (AirComp) is emerging as a promising solution by using the superposition characteristics of wireless channels. However, the fading and noise of wireless channels can cause aggregate distortions in AirComp enabled federated learning. In addition, the quality of collected data and energy consumption of edge devices may also impact the accuracy and efficiency of model aggregation as well as convergence. To solve these problems, this work proposes a dynamic device scheduling mechanism, which can select qualified edge devices to transmit their local models with a proper power control policy so as to participate the model training at the server in federated learning via AirComp. In this mechanism, the data importance is measured by the gradient of local model parameter, channel condition and energy consumption of the device jointly. In particular, to fully use distributed datasets and accelerate the convergence rate of federated learning, the local updates of unselected devices are also retained and accumulated for future potential transmission, instead of being discarded directly. Furthermore, the Lyapunov drift-plus-penalty optimization problem is formulated for searching the optimal device selection strategy. Simulation results validate that the proposed scheduling mechanism can achieve higher test accuracy and faster convergence rate, and is robust against different channel conditions.
Bicycling is an important form of active transport that contributes to sustainability mobility as a result of its role in personal and public health and emissions reduction. The significance of which has grown since the COVID‐19 pandemic outbreak. However, biking studies have neglected, in theoretical terms, developing an understanding of why consumers bike. Therefore, this research designs and verifies an extended theory of planned behavior adding personal and public health and a moderator of perceived smart application usage to help explain such consumer behavior. This study is based on a digital survey of South Koreans who biked for leisure, tourism, and/or work, utilizing partial least squares‐structural equation modeling with multi‐group analysis and Fuzzy‐set Qualitative Comparative Analysis. Results revealed that personal health is most important to cyclists, followed by public health, attitude, and subjective norm. Interestingly, people with perceived high usage of smart applications for biking show stronger relationships between public health and attitude and perceived behavioral control and behavioral intention than low users. In contrast, individuals with perceived low usage of smart applications for biking reveal a stronger relationship between attitude and behavioral intention than high users. The high and low user groups of smart applications also distinctively differ in levels of cycling behavior. Consequently, this work offers several theoretical and managerial implications for research and practice.
Aims: Cancer metastasis is the major cause of cancer-related deaths. There are few prior studies reported on molecules targeting C-X-C chemokine receptor (CXCR) family and manganese superoxide dismutase (MnSOD). CXCRs are known to involve in angiogenesis, metastasis, cell survival and MnSOD is reported to be related in Epithelial–mesenchymal transition (EMT). Main methods: Cell viability and cell proliferation were measured by MTT and BrdU assay. Protein expression level of CXCR4/7, MMP-2/9, MnSOD, and EMT markers were evaluated by Western blot analysis. mRNA levels of Snail and Occludin were analyzed by Real-time RT-qPCR. Expression of EMT markers in cells was observed by immunocytochemistry. Cell invasion and migrations were evaluated by wound healing assay and boyden chamber assay. Key findings: We noticed that LGA abolished proliferation, invasive ability, and cellular migration. LGA downregulated the protein levels of mesenchymal markers such as Twist, Snail, Fibronectin, and Vimentin in CXCL12-treated HCC cells. It also suppressed the gelatinolytic activity of MMP-9/2. The amplification of MnSOD increased EMT-like phenotypes but with LGA treatment, these phenotypes were markedly attenuated. The overexpression of MnSOD increased the ROS levels significantly but ROS levels were decreased upon exposure to LGA and deletion of MnSOD suppressed the levels of various mesenchymal proteins. Significance: LGA could function as a novel anti-metastatic agent by suppressing metastasis and EMT process via attenuation of MnSOD expression in hepatocellular carcinoma cells.
The goal of the 8th edition of the Clinical Practice Guidelines for Obesity is to help primary care physician provide safe, effective care to patients with obesity by offering evidence-based recommendations to improve the quality of treatment. The Committee for Clinical Practice Guidelines comprised individuals with multidisciplinary expertise in obesity management. A steering board of seven experts oversaw the entire project. Recommendations were developed based on answers to key questions formulated in patient/problem, intervention, comparison, outcomes (PICO) format. Guidelines underwent multi-level review and cross-checking and received endorsement from relevant scientific societies. This edition of the guidelines includes criteria for diagnosing obesity, abdominal obesity, and metabolic syndrome; evaluation of obesity and its complications; weight loss goals; and treatment options such as diet, exercise, behavioral therapy, pharmacotherapy, and bariatric/metabolic surgery for Korean people with obesity. Compared to previous editions of the guidelines, the current edition includes five new topics: diagnosis of obesity, obesity in women, obesity in patients with mental illness, weight maintenance after weight loss, and the use of information and communication technology-based interventions for obesity treatment. This edition of the guidelines features has improved organization, more clearly linking key questions in PICO format to recommendations and key references. We are confident that these new Clinical Practice Guidelines for Obesity will be a valuable resource for all healthcare professionals as they describe the most current and evidence-based treatment options for obesity in a well-organized format.
In recent years, plants have become an important part of traditional medicine. Although the medicinal potential of the plant looks very promising, there are great difficulties that inhibit products for the production of herbs on a large scale. Panax ginseng C.A. Mey. is a plant often used in traditional medicine in various countries because ginseng can cure various diseases in humans. The main bioactive component in ginseng is the triterpene saponin compound, namely ginsenosides. Ginseng needs to be cultivated at least 4 yr before the root can be harvested. In addition, a special environment is needed for ginseng to develop properly. One way to obtain ginsenosides is to use root hair culture. However, until now it has been reported that the accumulation of ginsensoside in root hair cultures is still low. Elicitation effective method to increase the production of secondary metabolites in vitro culture. The aim of this research was to observe the effect of elicitor in the form of yeast extract and coconut water to the media on the growth and levels of ginsenoside in flask scale Panax ginseng root hair culture. From the data obtained, it can be concluded that the addition of yeast extract from the start with a concentration of 20 mg L⁻¹ cannot increase the levels of ginsenoside in the hairy root culture of P. ginseng. The addition of coconut water from the beginning with a volume of 10 mL increases the biomass but cannot increase the ginsenoside levels in the hair culture of P. ginseng.
This study investigated the determination of detailed microstructure modeling of the trochlea of the superior oblique muscle (SOM) using micro-computed tomography (micro-CT) and modeling of a potential prototype for a trochlea implant using three-dimensional (3D) printing. We dissected 15 intact orbits of 15 embalmed cadavers. The trochleae of the SOM were detached from the periosteum. The specimens were stained by immersion in a 15% Lugol’s solution. Images were reconstructed using conventional scanner software. Measurement points were determined for the middle cross section. Points P1 and P2 were selected where the SOM adjoined the curvature of the inner trochlea. They defined the inner contact points of the SOM in the inner part of the trochlea curvature. On the back of the trochlea, points P3 and P4 were selected at the uppermost and lowest points in the inner parts of the straight trochlea, respectively. Origin O was defined on the arcuate line of P1P2^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{P1P2}$$\end{document} to generate the smallest-diameter circle consisting of P1, O, and P2. We then measured the angle from OP1¯toOP2¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{OP1 } to \overline{ OP2 }$$\end{document}, and from OP3¯toOP4¯.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{OP3 } to \overline{OP4 }.$$\end{document} We also measured the distances OP1¯,OP2¯,OP3¯,andOP4¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{OP1 }, \overline{OP2 }, \overline{OP3 }, and \overline{OP4 }$$\end{document} for the design of a potential trochlea implant prototype using 3D-printing and micro-CT-based modeling. The distances OP1¯,OP2¯,OP3¯,andOP4¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{OP1 }, \overline{OP2 }, \overline{OP3 }, and \overline{OP4 }$$\end{document} were 2.2 ± 0.7, 1.4 ± 0.5, 2.7 ± 0.9, and 2.5 ± 0.4 mm (mean ± SD), respectively. The angles from OP1¯toOP2¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{OP1 } to \overline{OP2 }$$\end{document}, from OP2¯toOP4,-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{OP2 } to \stackrel{-}{OP4,}$$\end{document} and from OP3¯toOP4¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{OP3 } to \overline{OP4 }$$\end{document} were 100.7 ± 14.4, 66.3 ± 18.0, and 98.9 ± 24.9 degrees, respectively. The present investigation demonstrates that the high-resolution CT is a powerful imaging technique for defining the true 3D geometry of a specimen and can potentially be used to create a 3D-printed trochlea implant.
Fluid balance is a critical prognostic factor for patients with severe acute kidney injury (AKI) requiring continuous renal replacement therapy (CRRT). This study evaluated whether repeated fluid balance monitoring could improve prognosis in this clinical population. This was a multicenter retrospective study that included 784 patients (mean age, 67.8 years; males, 66.4%) with severe AKI requiring CRRT during 2017–2019 who were treated in eight tertiary hospitals in Korea. Sequential changes in total body water were compared between patients who died (event group) and those who survived (control group) using mixed-effects linear regression analyses. The performance of various machine learning methods, including recurrent neural networks, was compared to that of existing prognostic clinical scores. After adjusting for confounding factors, a marginal benefit of fluid balance was identified for the control group compared to that for the event group (p = 0.074). The deep-learning model using a recurrent neural network with an autoencoder and including fluid balance monitoring provided the best differentiation between the groups (area under the curve, 0.793) compared to 0.604 and 0.606 for SOFA and APACHE II scores, respectively. Our prognostic, deep-learning model underlines the importance of fluid balance monitoring for prognosis assessment among patients receiving CRRT.
Background: Extracellular matrix (ECM) components promote the development of skin wounds by providing biological scaffolds and regenerative microenvironments. Aims: To evaluate the beneficial effects of human dermal fibroblast-derived ECM after fractional carbon dioxide laser resurfacing in Asians. Patients/methods: In this double-blind, randomized, vehicle-controlled, split-face study, 15 participants with features of facial skin aging were treated with a single session of fractional carbon dioxide laser, followed by the application of either ECM (ECM group) or placebo (control group). In vivo skin parameters were measured at baseline and after 4 and 12 weeks of treatment using the Antera 3D®, Cutometer® MPA580, Dermascan®, and Tewameter®. Results: A total of 14 participants (mean age 45.1 ± 9.7 years) completed the study. The change in melanin level was significantly lower in the ECM group than in the control group at week 12 (p < 0.05). Transient increase in erythema level was observed at week 4 in the control group, and the change in the erythema level was greater in the control group than in the ECM group (p = 0.014). Though the ECM group showed improvements in the dermal density, texture, transepidermal water loss, marionette lines (volume, maximum depth, and average depth), and nasolabial folds (volume, maximum depth, and length), no significant differences were found between the two groups. Treatment-related adverse events were not reported. Conclusions: We suggest that human dermal fibroblast-derived ECM may be used as adjunctive therapy after fractional carbon dioxide resurfacing to prevent postinflammatory hyperpigmentation in Asians.
Due to the relatively long sequence, tracrRNAs are chemically less synthesizable than crRNAs, leading to limited scalability of RNA guides for CRISPR-Cas9 systems. To develop shortened versions of RNA guides with improved cost-effectiveness, we have developed a split-tracrRNA system by nicking the 67-mer tracrRNA (tracrRNA(67)). Cellular gene editing assays and in vitro DNA cleavage assays revealed that the position of the nick is critical for maintaining the activity of tracrRNA(67). TracrRNA(41 + 23), produced by nicking in stem loop 2, showed gene editing efficiency and specificity comparable to those of tracrRNA(67). Removal of the loop of stem loop 2 was further possible without compromising the efficiency and specificity when the stem duplex was stabilized via a high GC content. Binding assays and single-molecule experiments suggested that efficient split-tracrRNAs could be engineered as long as their binding affinity to Cas9 and their reaction kinetics are similar to those of tracrRNA(67).
This paper is designed to investigate the effect of corruption as a representative of institutional factors on environmental quality for a panel of Commonwealth of Independent States. Data is mostly from World Development Indicators of World Bank covering the period from 2003 to 2013. Corruption data is from World Governance Indicators of World Bank. Panel two-stage least squares considering the endogeneity problem between corruption and economic growth and panel generalized least squares analysis were conducted to estimate the direct and indirect effects of corruption on CO2. The result shows that corruption has been shown to increase CO2 directly while decreasing it indirectly by obstructing economic growth. The total effect of corruption on environmental quality for a panel of Commonwealth of Independent States is estimated to be negative. It confirms the severity of the corruption problem and the necessity for considerable efforts to overcome it for transitional economies to prepare for the low-carbon economy. Also, evidence of the N-shaped Environmental Kuznets Curve is confirmed, showing the possibility of re-degradation after reducing the CO2 level.
Current treatments for patients with coronary aneurysms caused by Kawasaki disease (KD) are based primarily on aneurysm size. This ignores hemodynamic factors influencing myocardial ischemic risk. We performed patient-specific computational hemodynamics simulations for 15 KD patients, with parameters tuned to patients' arterial pressure and cardiac function. Ischemic risk was evaluated in 153 coronary arteries from simulated fractional flow reserve (FFR), wall shear stress, and residence time. FFR correlated weakly with aneurysm [Formula: see text]-scores (correlation coefficient, [Formula: see text]) but correlated better with the ratio of maximum-to-minimum aneurysmal lumen diameter ([Formula: see text]). FFR dropped more rapidly distal to aneurysms, and this correlated more with the lumen diameter ratio ([Formula: see text]) than [Formula: see text]-score ([Formula: see text]). Wall shear stress correlated better with the diameter ratio ([Formula: see text]), while residence time correlated more with [Formula: see text]-score ([Formula: see text]). Overall, the maximum-to-minimum diameter ratio predicted ischemic risk better than [Formula: see text]-score. Although FFR immediately distal to aneurysms was nonsignificant, its rapid rate of decrease suggests elevated risk.
Among 17 Panax species identified across the world, Panax ginseng (Korean ginseng), Panax quinquefolius (American ginseng), and Panax notoginseng (Chinese ginseng) are highly recognized for the presence of bioactive compound, ginsenosides and their pharmacological effects. P. ginseng is widely used for synthesis of different types of nanoparticles compared to P. quinquefolius and P. notoginseng. The use of nano-ginseng could increase the oral bioavailability, membrane permeability, and thus provide effective delivery of ginsenosides to the target sites through transport system. In this review, we explore the synthesis of ginseng nanoparticles using plant extracts from various organs, microbes, and polymers, as well as their biomedical applications. Furthermore, we highlight transporters involved in transport of ginsenoside nanoparticles to the target sites. Size, zeta potential, temperature, and pH are also discussed as the critical parameters affecting the quality of ginseng nanoparticles synthesis.
The emergence of digital technology has led researchers, businesses, and entrepreneurs to reflect more on the potential value that Augmented Reality (AR) can play in tourism. Although the relationship between authenticity and travel intention has been examined previously, little is known about how authenticity influences tourist travel intention after an AR experience. To fill this research gap, the current study constructs a theoretical model from narrative transportation theory. The results show that narrative transportation is a mechanism that bridges object-based authenticity and existential authenticity with travel intention. This study provides valuable theoretical insights into the antecedents and consequences of narrative transport while enriching the understanding of AR. Meaningful practical insights are offered to destination authorities.
Background Increased glucose level and insulin resistance are major factors in Type 2 diabetes mellitus (T2M), which is chronic and debilitating disease worldwide. Submerged culture medium of Ceriporia lacerata mycelium (CLM) is known to have glucose lowering effects and improving insulin resistance in a mouse model in our previous studies. The main purpose of this clinical trial was to evaluate the functional efficacy and safety of CLM in enrolled participants with impaired fasting blood sugar or mild T2D for 12 weeks. Methods A total of 72 participants with impaired fasting blood sugar or mild T2D were participated in a randomized, double-blind, placebo-controlled clinical trial. All participants were randomly assigned into the CLM group or placebo group. Fasting blood glucose (FBG), HbA1c, insulin, C-peptide, HOMA-IR, and HOMA-IR by C-peptide were used to assess the anti-diabetic efficacy of CLM for 12 weeks. Results In this study, the effectiveness of CLM on lowering the anti-diabetic indicators (C-peptide levels, insulin, and FBG) was confirmed. CLM significantly elicited anti-diabetic effects after 12 weeks of ingestion without showing any side effects in both groups of participants. After the CLM treatment, FBG levels were effectively dropped by 63.9% (ITT), while HOMA-IR level in the CLM group with FBG > 110 mg/dL showed a marked decrease by 34% up to 12 weeks. Remarkably, the effect of improving insulin resistance was significantly increased in the subgroup of participants with insulin resistance, exhibiting effective reduction at 6 weeks (42.5%) and 12 weeks (61%), without observing a recurrence or hypoglycemia. HbA1c levels were also decreased by 50% in the participants with reduced indicators (FBG, insulin, C-peptide, HOMA-IR, and HOMA-IR). Additionally, it is noteworthy that the levels of insulin and C-peptide were significantly reduced despite the CLM group with FBG > 110 mg/dL. No significant differences were detected in the other parameters (lipids, blood tests, and blood pressure) after 12 weeks. Conclusion The submerged culture medium of CLM showed clinical efficacy in the improvement of FBG, insulin, C-peptide, HbAc1, and HOMA-index. The microbiome-based medium could benefit patients with T2D, FBG disorders, or pre-diabetes, which could guide a new therapeutic pathway in surging the global diabetes epidemic.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
4,963 members
Ayaz Anwar
  • Department of Applied Chemistry
Taegoo Terry Kim
  • Department of Global Eminence
Nam Minh Nguyen
  • School of Medicine
Ashwini Kumar Arya
  • Department of Electronic Engineering
Sang Hyuk Im
  • Department of Chemical Engineering(Graduate)
Information
Address
Seoul, South Korea