Recent PublicationsView all

  • [Show abstract] [Hide abstract]
    ABSTRACT: Individuals with inherited skin diseases often pose one of the most difficult diagnostic challenges in dermatology. The hunt for the underlying molecular pathology may involve candidate gene screening or linkage analysis, which is usually determined by the initial history, the physical findings and laboratory tests. Recent technical advances in DNA sequencing, however, are shifting the diagnostic paradigm. Notably, next-generation sequencing allows a more comprehensive approach to diagnosing inherited diseases, with potential savings of both time and money. In the setting of a paediatric dermatology genetics clinic in Kuwait, we therefore performed whole-exome sequencing on seven individuals without a priori detailed knowledge of the patients' disorders: from these sequencing data, we diagnosed X-linked hypohidrotic ectodermal dysplasia (two cases), acrodermatitis enteropathica, recessive erythropoietic protoporphyria (two siblings) and localized recessive dystrophic epidermolysis bullosa (two siblings). All these groups of disorders are clinically and genetically heterogeneous, but the sequencing data proved inherently useful in improving patient care and avoiding unnecessary investigations. Our observations highlight the value of whole-exome sequencing, in combination with robust bioinformatics analysis, in determining the precise molecular pathology and clinical diagnosis in patients with genetic skin disorders, notably at an early stage in the clinical evaluation of these often complex disorders and thereby support a new paradigm for future diagnostics.
    No preview · Article · Dec 2013 · Experimental Dermatology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reversible protein acetylation provides a central mechanism for controlling gene expression and cellular signaling events. It is governed by the antagonistic commitment of two enzymes families: the histone acetyltransferases (HATs) and the histone deacetylases (HDACs). HDAC4, like its class IIa counterparts, is a potent transcriptional repressor through interactions with tissue specific transcription factors via its N-terminal domain. Whilst the lysine deacetylase activity of the class IIa HDACs is much less potent than that of the class I enzymes, HDAC4 has been reported to influence protein deacetylation through its interaction with HDAC3. To investigate the influence of HDAC4 on protein acetylation we employed the immunoaffinity-based AcetylScan proteomic method. We identified many proteins known to be modified by acetylation, but found that the absence of HDAC4 had no effect on the acetylation profile of the murine neonate brain. This is consistent with the biochemical data suggesting that HDAC4 may not function as a lysine deacetylase, but these in vivo data do not support the previous report showing that the enzymatic activity of HDAC3 might be modified by its interaction with HDAC4. To complement this work, we used Affymetrix arrays to investigate the effect of HDAC4 knock-out on the transcriptional profile of the postnatal murine brain. There was no effect on global transcription, consistent with the absence of a differential histone acetylation profile. Validation of the array data by Taq-man qPCR indicated that only protamine 1 and Igfbp6 mRNA levels were increased by more than one-fold and only Calml4 was decreased. The lack of a major effect on the transcriptional profile is consistent with the cytoplasmic location of HDAC4 in the P3 murine brain.
    Full-text · Article · Nov 2013 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: As IL36RN mutations are a cause of generalized pustular psoriasis (GPP), three recent investigations attempted to correlate the IL36RN genotype with GPP clinical presentations. These studies found that IL36RN mutations account for only a fraction of GPP cases presenting with concomitant psoriasis vulgaris (PV; common or typical psoriasis). Pathogenic alleles were also found in control populations, indicating that environmental triggers and/or modifier genes may contribute to the disease.
    No preview · Article · Nov 2013 · Journal of Investigative Dermatology
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.