James Cook University
  • Townsville, Queensland, Australia
Recent publications
Although it is widely recognized that strong program management is essential to achieving better health outcomes, this priority is not recognized in malaria programmatic practices. Increased management precision offers the opportunity to improve the effectiveness of malaria interventions, overcoming operational barriers to intervention coverage and accelerating the path to elimination. Here we propose a combined approach involving quality improvement, quality management, and participative process improvement, which we refer to as Combined Quality and Process Improvement (CQPI), to improve upon malaria program management. We draw on evidence from other areas of public health, as well as pilot implementation studies in Eswatini, Namibia and Zimbabwe to support the proposal. Summaries of the methodological approaches employed in the pilot studies, overview of activities and an outline of lessons learned from the implementation of CQPI are provided. Our findings suggest that a malaria management strategy that prioritizes quality and participative process improvements at the district-level can strengthen teamwork and communication while enabling the empowerment of subnational staff to solve service delivery challenges. Despite the promise of CQPI, however, policy makers and donors are not aware of its potential. Investments are therefore needed to allow CQPI to come to fruition.
Successful implementation research requires effective and equitable relationships between policy-makers, researchers and implementers to effect evidence-based systems change. However, mainstream research grant models between Global North and Global South institutions often (unintentionally) reinforce power imbalances between partners, which result in missed opportunities for knowledge and learning exchange between policy-makers, researchers and implementers. This case study, centred on the STRIVE PNG project, describes how a partnership-based approach has been used to establish, maintain and review effective and equitable relationships between 13 partner organizations (independent research institutes, government health agencies and public health laboratories) to strengthen surveillance and health systems in Papua New Guinea (PNG). We provide an overview of key terms (with supporting conceptual frameworks), describe selected partnership processes and tools used within the project, and share observations regarding early outcomes achieved through this approach.
Background Approximately 50% of freshwater turtles worldwide are currently threatened by habitat loss, rural development and altered stream flows. Paradoxically, reptiles are understudied organisms, with many species lacking basic geographic distribution and abundance data. The iconic Irwin’s turtle, Elseya irwini , belongs to a unique group of Australian endemic freshwater turtles capable of cloacal respiration. Water resource development, increased presence of saltwater crocodiles and its cryptic behaviour, have made sampling for Irwin’s turtle in parts of its range problematic, resulting in no confirmed detections across much of its known range for > 25 years. Here, we used environmental DNA (eDNA) analysis for E. irwini detection along its historical and contemporary distribution in the Burdekin, Bowen and Broken River catchments and tributaries. Five replicate water samples were collected at 37 sites across those three river catchments. Environmental DNA was extracted using a glycogen-aided precipitation method and screened for the presence of E. irwini through an eDNA assay targeting a 127 base pair-long fragment of the NADH dehydrogenase 4 (ND4) mitochondrial gene. Results Elseya irwini eDNA was detected at sites within its historic distribution in the lower Burdekin River, where the species had not been formally recorded for > 25 years, indicating the species still inhabits the lower Burdekin area. We also found higher levels of E. iriwni eDNA within its contemporary distribution in the Bowen and Broken Rivers, matching the prevailing scientific view that these areas host larger populations of E. irwini . Conclusions This study constitutes the first scientific evidence of E. irwini presence in the lower Burdekin since the original type specimens were collected as part of its formal description, shortly after the construction of the Burdekin Falls Dam. From the higher percentage of positive detections in the upper reaches of the Broken River (Urannah Creek), we conclude that this area constitutes the core habitat area for the species. Our field protocol comprises a user-friendly, time-effective sampling method. Finally, due to safety risks associated with traditional turtle sampling methods in the Burdekin River (e.g., estuarine crocodiles) we propose eDNA sampling as the most pragmatic detection method available for E. irwini .
Background Pressure offloading treatment is critical for healing diabetes-related foot ulcers (DFU). Yet the 2011 Australian DFU guidelines regarding offloading treatment are outdated. A national expert panel aimed to develop a new Australian guideline on offloading treatment for people with DFU by adapting international guidelines that have been assessed as suitable to adapt to the Australian context. Methods National Health and Medical Research Council procedures were used to adapt suitable International Working Group on the Diabetic Foot (IWGDF) guidelines to the Australian context. We systematically screened, assessed and judged all IWGDF offloading recommendations using best practice ADAPTE and GRADE frameworks to decide which recommendations should be adopted, adapted or excluded in the Australian context. For each recommendation, we re-evaluated the wording, quality of evidence, strength of recommendation, and provided rationale, justifications and implementation considerations, including for geographically remote and Aboriginal and Torres Strait Islander peoples. This guideline, along with five accompanying Australian DFU guidelines, underwent public consultation, further revision and approval by ten national peak bodies (professional organisations). Results Of the 13 original IWGDF offloading treatment recommendations, we adopted four and adapted nine. The main reasons for adapting the IWGDF recommendations included differences in quality of evidence ratings and clarification of the intervention(s) and control treatment(s) in the recommendations for the Australian context. For Australians with plantar DFU, we recommend a step-down offloading treatment approach based on their contraindications and tolerance. We strongly recommend non-removable knee-high offloading devices as first-line treatment, removable knee-high offloading devices as second-line, removable ankle-high offloading devices third-line, and medical grade footwear as last-line. We recommend considering using felted foam in combination with the chosen offloading device or footwear to further reduce plantar pressure. If offloading device options fail to heal a person with plantar DFU, we recommend considering various surgical offloading procedures. For people with non-plantar DFU, depending on the type and location of the DFU, we recommend using a removable offloading device, felted foam, toe spacers or orthoses, or medical grade footwear. The six new guidelines and the full protocol can be found at: https://diabetesfeetaustralia.org/new-guidelines/ . Conclusions We have developed a new Australian evidence-based guideline on offloading treatment for people with DFU that has been endorsed by ten key national peak bodies. Health professionals implementing these offloading recommendations in Australia should produce better DFU healing outcomes for their patients, communities, and country.
This paper aims to quantitatively evaluate the residual stress and fatigue life of T-type welded joints with a multi-pass weld in different direction. The main research objectives of the experimental test were to test the residual stress by changing direction along with multiple wielding passes and determine the fatigue life of the welded joints. The result shows that compressive residual stress increases in the sample gradually from single-pass weld to double and triple-pass weld. Moreover, the fatigue life of the specimen also gradually improves with an increasing number of welding passes. Performing multi-pass welding in different directions affects the ma-terial's residual stress and fatigue life, which is an essential factor to consider for assuring the strength of the welded joint.
Welding processes often produce high levels of tensile residual stress. Low transformation temperature (LTT) welding wires utilise phase transformation strains to overcome the thermal contraction of a cooling weld. In this paper, the residual stress within each weld was quantified using the milling/strain gauge method, being the strain change measured as the weldment was milled away. The fatigue tests were conducted under uniaxial loading considering two types of LTT materials. The results show that the crack propagation of all samples was similar in cycles although both LTT materials extended the crack initiation, and, therefore, the overall life of the part. It was found that both LTT materials reduced the residual tensile stresses, increased the residual compressive stresses, leading to increase in fatigue life about 30%.
Purpose The aim of this research is to examine the experience and impact of radiotherapy related fatigue in children diagnosed with solid tumours. Design and methods Children (n = 25) and parents (n = 19) participated in a semi-structured interview on the last week of radiotherapy treatment. The study sample included children who were 6 to 14 years of age, diagnosed with brain or solid tumour, and received radiotherapy as part of their treatment protocol over the period of 6 weeks. Interpretation of data was undertaken through the adoption of thematic analysis approach. Results Data revealed children's experience and response to fatigue while undergoing radiotherapy. Several recurring themes arose about their experience of fatigue/tiredness while undergoing radiotherapy. Two themes and eight sub themes, namely ‘Experience of Fatigue’ (“You feel Different in your body”, Mood and Feeling, Activity and Occurrence) and ‘Response to Fatigue’ (Rest and Sleep, Activity, Mood and Concentration and Eating Habit) were identified. Conclusions The findings illustrated significant fatigue on activity sleep, rest and mood of children undergoing radiotherapy. Practice implications Monitoring and addressing fatigue and its consequences during radiotherapy treatment are essential to improve well-being of children with cancer.
Extreme climatic events trigger changes in ecosystems with potential negative impacts for people. These events may provide an opportunity for environmental managers and decision-makers to improve the governance of social-ecological systems, however there is conflicting evidence regarding whether these actors are indeed able to change governance after extreme climatic events. In addition, the majority of research to date has focused on changes in specific policies or organizations after crises. A broader investigation of governance actors’ activities is needed to more fully understand whether or not crises trigger change. Here we demonstrate the use of a social network analysis of management and decision-making forums (e.g. meetings, partnerships) to reveal the effects of an extreme climatic event on governance of the Great Barrier Reef over an eight-year period. To assess potential shifts in action, we examine the topics of forums and the relative participation and influence of diverse governance actors before, during, and after two back-to-back mass coral bleaching events in 2016 and 2017. Our analysis reveals that there is little change in the topics that receive attention, and in the relative participation and influence of different actor groups in the region. Our research demonstrates that network analysis of forums is useful for analyzing whether or not actors’ activities and priorities evolve over time. Our results provide empirical evidence that governance actors struggle to leverage extreme climate events as windows of opportunity and further research is needed to identify alternative opportunities to improve governance.
Giant grouper (Epinephelus lanceolatus) is an emerging aquaculture species in Southeast Asia and Australia with limited knowledge of its nutrient requirements and effects of supplements on its physiology. The present study investigated the effects of astaxanthin, vitamin E, and combinations on growth performance, body coloration, and the antioxidant status of juvenile giant grouper. Nine isonitrogenous (crude protein = 65 % ± 0.7 %) and isolipidic (crude lipid = 10 % ± 0.3 %) diets were formulated using a 3 × 3 factorial design, including three levels astaxanthin (0, 75, and 150 mg/kg) and vitamin E (0, 250, and 500 mg/kg), respectively. Each of the nine diets was fed to triplicate groups of 15 giant grouper (18.04 ± 0.92 g) for 30 days. Giant grouper fed the different diets exhibited no significant differences (p > 0.05) in specific growth rate (4.87 %/day - 5.21 %/day). However, dietary astaxanthin supplementation significantly enhanced the redness (a*), yellowness (b*b*), chroma, and hue values of the fin, regardless of the dose supplemented. Giant grouper fed astaxanthin at 75 and 150 mg/kg diet were more yellow and had three times higher b* values than fish fed non-supplemented diets. Further, total antioxidant capacity (TAC; mmol Trolox equivalent) in liver tissues was significantly increased in fish fed any of the astaxanthin-supplemented diets (p ≤ 0.05). In contrast, TAC levels were not affected by vitamin E supplementation. Malondialdehyde (MDA) levels were not significantly (p > 0.05) affected by astaxanthin or vitamin E. Findings from this study will contribute toward a better understanding of the dietary effects of antioxidant and pigment in juvenile giant grouper. We present that dietary treatment can modulate giant grouper pigmentation and may be used in the live fish trade. Further, this study contributes to narrowing the knowledge gap in formulating appropriate diets for giant grouper, which to date is fed diets formulated for other species.
Emerging economies, particularly China, are likely to play a critical role in determining global food waste. The paper investigates plate waste from a staple food consumption pattern perspective by surveying 9,192 Chinese university students at the on-campus canteens in 29 provinces of mainland China. A significant finding is that diet culture is closely related to food waste. Southerners who consume rice as a staple food are found to waste more food than Northerners who are wheat-based eaters on average. A robust test confirms the finding when matching the student's hometown and university location and setting the "Southerners studying in South China" as the reference group. Taking into account the possible self-selection problem, the robustness test based on the PSM model also confirms the association between staple food consumption patterns and food waste in Chinese university canteens. Comparative analyses based on the components of food consumption and the compositions of wastage further suggest that the differences in staple food consumption patterns determine the food wastage variations. This study provides empirical evidence that differences in consumption patterns bring about the disparity in food wastage within a country.
Geochemical heterogeneities observed in the mantle are usually attributed to recycling of oceanic lithosphere through subduction. However, it remains hotly debated where recycled material stagnates, and how quickly it can be liberated back to surface. This knowledge gap hinders our understanding of mantle circulation and the chemical evolution of the Earth. Here we address these questions using a combination of geochronology and geochemistry from South China Sea (SCS) seamounts. The Shixingbei seamount lavas formed during active seafloor spreading at c. 19.1 Ma show limited geochemical variability, whereas the Zhenbei-Huangyan seamount chain formed during the post-spreading stage at c. 7.8 Ma and displays a wide range of compositions. However, melt inclusions in olivine and plagioclase from the Zhenbei-Huangyan basalts show considerably greater isotopic variability than seen in the whole rock compositions of both the SCS syn- and post-spreading lavas. A previously unidentified third mantle source component (FOZO) revealed by olivine-hosted melt inclusions along with both depleted (DMM) and enriched (EMII) mantle components is required in the source region to explain the observed isotopic and chemical variability. On the basis of our results, the age of the recycled ocean crust and sediments in this region are estimated to be c. 120 – 350 Ma. We infer that these enriched components in the SCS lavas come from the mantle transition zone. Variations in mantle source heterogeneity coupled with melting process control spatial–temporal (spreading vs. post-spreading stage) geochemical variations of lavas from the SCS and surrounding areas. Together with the results from published studies, we propose that marginal basins are one of the major locations on Earth where oceanic and/or continental lithosphere is transferred into the upper mantle and transition zone, representing an important source of upper mantle heterogeneity. We provide a simple conceptual model linking plate subduction and upper mantle heterogeneity and the volcanism in the SCS and surrounding areas.
Coral reef fishes often exhibit specific or restricted depth distributions, but the factors (biotic or abiotic) that influence patterns of depth use are largely unknown. Given inherent biological gradients with depth (i.e. light, nutrients, habitat, temperature), it is expected that fishes may exploit certain depths within their environment to seek out more favourable conditions. This study used baited remote underwater video (BRUV) systems to document variation in the taxonomic and functional (trophic and size) structure of a fish assemblage along a shallow to upper-mesophotic depth gradient (13–71 m) at a submerged, offshore shoal in the northern Great Barrier Reef. BRUVs were deployed during two separate time periods (February and August 2017), to separately examine patterns of depth use. Both the relative abundance and diversity of reef fishes declined with depth, and there were pronounced differences in the taxonomic and functional structure of the fish assemblage across the depth gradient. In shallow habitats (< 30 m), the fish assemblage was dominated by herbivores, detritivores, planktivores and sessile invertivores, whereas the fish assemblage in deeper habitats (> 30 m) was dominated by piscivores and mobile invertivores. Depth and habitat type were also strong predictors for important fisheries species such as coral trout (Plectropomus spp.), emperors (Lethrinus spp.) and trevallies (Carangid spp.). We found limited evidence of temporal changes in depth and habitat use by fishes (including fisheries target species), although recorded temperatures were 4 °C higher in February 2017 compared to August 2017.
Body wave observations of the Earth's inner core show that it contains strong seismic heterogeneity, both laterally and radially. Models of inner core structure generated using body wave data are often limited by their parameterisation. Thus, it is difficult to determine whether features such as anisotropic hemispheres or an innermost inner core truly exist with their simple shapes, or result only from the chosen parameterisation and are in fact more complex features. To overcome this limitation, we conduct seismic tomography using transdimensional Markov Chain Monte Carlo on a high quality dataset of 5296 differential and 2344 absolute P-wave travel times. In a transdimensional approach, the data defines the model space parameterisation, providing us with both the mean value of each model parameter and its probability distribution, allowing us to identify well versus poorly constrained regions. We robustly recover many first order observations found in previous studies without the imposition of a priori fixed geometry including an isotropic top layer (with anisotropy less than 1%) which is between 60 and 170 km thick, and separated into hemispheres with a slow west and a faster east. Strong anisotropy (with a maximum of 7.2%) is found mainly in the west, with much weaker anisotropy in the east. We observe for the first time that the western anisotropic zone is largely confined to the northern hemisphere, a property which would not be recognised in models assuming a simple hemispherical parameterisation. We further find that the inner most inner core, in which the slowest anisotropic velocity direction is tilted relative to Earth's axis of rotation (ζ=55∘±16∘), is offset by 400 km from the centre of the inner core and is restricted to the eastern hemisphere. We propose that this anomalous anisotropy might indicate the presence of a different phase of iron (either bcc or fcc) compared to the rest of the inner core (hcp).
Plain Language Summary Water lost by plants through evaporation is strongly linked with the temperature at an unknown height within the canopy. Because this in‐canopy temperature cannot be typically measured by a satellite, the majority of the global evaporation models substitute this with skin temperature, or the near‐surface temperature observed by the satellite sensors. Such methods do not fully capture the physical and biological processes governing the magnitude and variability of plant water use under severe water stress, leading to substantial errors in water cycle monitoring in the dry regions. Here, we show how a simple model that requires no anticipated parameter, provides not only reasonable estimates of evaporation in a variety of dry and wet conditions, but also a better insight into the role of plant water stress and greenness in the difference between the in‐canopy temperature and skin temperature. This model offers an alternative and novel perspective that can be used in images from current and future thermal satellite missions to advance global plant water use mapping for several water management applications and to investigate the highly complex land‐atmosphere interactions and feedback mechanisms.
Each year, trillions of insects make long-range seasonal migrations. These movements are relatively well understood at a population level, but how individual insects achieve them remains elusive. Behavioral responses to conditions en route are little studied, primarily owing to the challenges of tracking individual insects. Using a light aircraft and individual radio tracking, we show that nocturnally migrating death's-head hawkmoths maintain control of their flight trajectories over long distances. The moths did not just fly with favorable tailwinds; during a given night, they also adjusted for head and crosswinds to precisely hold course. This behavior indicates that the moths use a sophisticated internal compass to maintain seasonally beneficial migratory trajectories independent of wind conditions, illuminating how insects traverse long distances to take advantage of seasonal resources.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
7,133 members
Lars Henning
  • Anton Breinl Centre for Public Health & Tropical Medicine
Bemnet A Tedla
  • Australian Institute of Tropical Health and Medicine
Stephan Dahl
  • Department of Business
David Jones
  • Centre for Sustainable Tropical Fisheries and Aquaculture
James Cook University, 14-88 McGregor Road, Smithfield, 4878, Townsville, Queensland, Australia