Instituto de Investigaciones Cientificas y Servicios de Alta Tecnologia
Recent publications
Seed dispersal by animals is key for restoration of tropical forests because it maintains plant diversity and accelerates community turnover. Therefore, changes in seed dispersal during forest restoration can indicate the recovery of species interactions, and yet these changes are rarely considered in forest restoration planning. In this study, we examined shifts in the importance of different seed dispersal modes during passive restoration in a tropical chronosequence spanning more than 100 years, by modelling the proportion of trees dispersed by bats, small birds, large birds, flightless mammals and abiotic means as a function of forest age. Contrary to expectations, tree species dispersed by flightless mammals dominated after 20 years of regeneration, and tree richness and abundance dispersed by each mode mostly recovered to old growth levels between 40 and 70 years post-abandonment. Seed dispersal by small birds declined over time during regeneration, while bat dispersal played a minor role throughout all stages of succession. Results suggest that proximity to old growth forests, coupled with low hunting, explained the prevalence of seed dispersal by animals, especially by flightless mammals at this site. We suggest that aspects of seed dispersal should be monitored when restoring forest ecosystems to evaluate the reestablishment of species interactions. This article is part of the theme issue ‘Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration’.
Characterizing the factors that shape variation in brain size in natural populations is crucial to understanding the evolution of brain size in animals. Here, we explore how relative brain size and brain allometry vary with drainage, predation risk and sex in natural populations of the electric knifefish Brachyhypopomus occidentalis. Fish were sampled from high and low predation risk sites within two independent river drainages in eastern and central Panamá. Overall, we observed low variation in brain-body size allometric slopes associated with drainage, predation risk and sex category. However, we observed significant differences in allometric intercepts between predation risk sites. We also found significant differences in relative brain mass associated with drainage, as well as significant differences in absolute brain mass associated with drainage, predation risk and sex category. Our results suggest potential constraints in brain-body allometry across populations of B. occidentalis. However, both drainage and predation risk may be playing a role in brain mass variation among populations. We suggest that variation in brain mass in electric fishes is affected by multiple extrinsic and intrinsic factors, including geography, environmental complexity, social interaction and developmental or functional constraints.
We aim to provide a harmonized view of the factors that affect the survival and promote the spread of R. microplus in the Neotropics, approaching its different facets of biology, ecology, distribution, and control. We review the interactions among environmental niche, landscape fragmentation, vegetal coverage (abiotic traits), and the biotic aspects of its ecology (abundance of domesticated or wild competent hosts), proposing emerging areas of research. We emphasize a holistic view integrating an economically and ecologically sustainable control of infestations and transmitted pathogens by R. microplus in the Neotropics. Examples of research link the trends of climate, the composition of the community of hosts, the landscape features, and a tailored management based on ecological grounds. Our view is that factors driving the spread of R. microplus are complex and deeply interrelated, something that has been seldom considered in control strategies. The effects of climate may affect the dynamics of wildlife or the landscape composition, promoting new patterns of seasonal activity of the tick, or its spread into currently free areas. In this paper we encourage a One Health approach highlighting the main aspects governing the components of the tick’s life cycle and its interactions with livestock and wild animals.
The term terroir is used in viticulture to emphasize how the biotic and abiotic characteristics of a local site influence grape physiology and thus the properties of wine. In ecology and evolution, such terroir (i.e., the effect of space or "site") is expected to play an important role in shaping phenotypic traits. Just how important is the pure spatial effect of terroir (e.g., differences between sites that persist across years) in comparison to temporal variation (e.g., differences between years that persist across sites), and the interaction between space and time (e.g., differences between sites change across years)? We answer this question by analyzing beak and body traits of 4388 medium ground finches (Geospiza fortis) collected across 10 years at three locations in Galápagos. Analyses of variance indicated that phenotypic variation was mostly explained by site for beak size (η 2 = 0.42) and body size (η 2 = 0.43), with a smaller contribution for beak shape (η 2 = 0.05) and body shape (η 2 = 0.12), but still higher compared to year and site-by-year effects. As such, the effect of terroir seems to be very strong in Darwin's finches, notwithstanding the oft-emphasized interannual variation. However, these results changed dramatically when we excluded data from Daphne Major, indicating that the strong effect of terroir was mostly driven by that particular population. These phenotypic results were largely paralleled in analyses of environmental variables (rainfall and vegetation indices) expected to shape terroir in this system. These findings affirm the evolutionary importance of terroir, while also revealing its dependence on other factors, such as geographical isolation.
Entomopathogenic fungi (EPF) infect insects and are of interest for understanding host-pathogen interactions and biological control of insect pests. The fruit fly Drosophila melanogaster offers an excellent model system for exploring the biology of EPF and their interactions with insects. In this review, we describe the advantages of using D. melanogaster as a model system to study EPF and highlight EPF of relevance to agriculture. We also propose possible directions for future research in this area. We predict that in the future, D. melanogaster will continue to be a productive system for understanding the biology of the fungi attacking insects and will no doubt contribute to the future of biological control, conservation and other areas.
Objective The aim of this study was to assess the accuracy of prenatal imaging for the diagnosis of congenital Zika syndrome.Data sourcesMedline (via Pubmed), PubMed, Scopus, Web of Science, and Google Scholar from inception to March 2022. Two researchers independently screened study titles and abstracts for eligibility.Study eligibility criteriaObservational studies with Zika virus-infected pregnant women were included. The index tests included ultrasound and/or magnetic resonance imaging. The reference standard included (1) Zika infection-related perinatal death, stillbirth, and neonatal death within the first 48 h of birth, (2) neonatal intensive care unit admission, and (3) clinically defined adverse perinatal outcomes.Synthesis methodsWe extracted 2 × 2 contingency tables. Pooled sensitivity and specificity were estimated using the random-effects bivariate model and assessed the summary receiver operating characteristic (ROC) curve. Risk of bias was assessed using QUADAS 2 tool. The certainty of the evidence was evaluated with grading of recommendations.ResultsWe screened 1,459 references and included 18 studies (2359 pregnant women, 347 fetuses with confirmed Zika virus infection). Twelve studies (67%) were prospective cohorts/case series, and six (37%) were retrospective cohort/case series investigations. Fourteen studies (78%) were performed in endemic regions. Ten studies (56%) used prenatal ultrasound only, six (33%) employed ultrasound and fetal MRI, and two studies (11%) used prenatal ultrasound and postnatal fetal MRI. A total of six studies (ultrasound only) encompassing 780 pregnant women (122 fetuses with confirmed Zika virus infection) reported relevant data for meta-analysis (gestation age at which ultrasound imagining was captured ranged from 16 to 34 weeks). There was large heterogeneity across studies regarding sensitivity (range: 12 to 100%) and specificity (range: 50 to 100%). Under a random-effects model, the summary sensitivity of ultrasound was 82% (95% CI, 19 to 99%), and the summary specificity was 97% (71 to 100%). The area under the ROC curve was 97% (95% CI, 72 to 100%), and the summary diagnostic odds ratio was 140 (95% CI, 3 to 7564, P < 0.001). The overall certainty of the evidence was “very low”.Conclusion Ultrasound may be useful in improving the diagnostic accuracy of Zika virus infection in pregnancy. However, the evidence is still substantially uncertain due to the methodological limitations of the available studies. Larger, properly conducted diagnostic accuracy studies of prenatal imaging for the diagnosis of congenital Zika syndrome are warranted.Systematic review registrationIdentifier [CRD42020162914].
Purpose of Review Review building of programs to eliminate Toxoplasma infections. Recent Findings Morbidity and mortality from toxoplasmosis led to programs in USA, Panama, and Colombia to facilitate understanding, treatment, prevention, and regional resources, incorporating student work. Summary Studies foundational for building recent, regional approaches/programs are reviewed. Introduction provides an overview/review of programs in Panamá, the United States, and other countries. High prevalence/risk of exposure led to laws mandating testing in gestation, reporting, and development of broad-based teaching materials about Toxoplasma. These were tested for efficacy as learning tools for high-school students, pregnant women, medical students, physicians, scientists, public health officials and general public. Digitized, free, smart phone application effectively taught pregnant women about toxoplasmosis prevention. Perinatal infection care programs, identifying true regional risk factors, and point-of-care gestational screening facilitate prevention and care. When implemented fully across all demographics, such programs present opportunities to save lives, sight, and cognition with considerable spillover benefits for individuals and societies.
Purpose of Review Review international efforts to build a global public health initiative focused on toxoplasmosis with spillover benefits to save lives, sight, cognition and motor function benefiting maternal and child health. Recent Findings Multiple countries’ efforts to eliminate toxoplasmosis demonstrate progress and context for this review and new work. Summary Problems with potential solutions proposed include accessibility of accurate, inexpensive diagnostic testing, pre-natal screening and facilitating tools, missed and delayed neonatal diagnosis, restricted access, high costs, delays in obtaining medicines emergently, delayed insurance pre-approvals and high medicare copays taking considerable physician time and effort, harmful shortcuts being taken in methods to prepare medicines in settings where access is restricted, reluctance to perform ventriculoperitoneal shunts promptly when needed without recognition of potential benefit, access to resources for care, especially for marginalized populations, and limited use of recent advances in management of neurologic and retinal disease which can lead to good outcomes.
Background: The impact of the COVID-19 pandemic and the associated restrictions on mental health is being studied. Objective: To analyze the psychosocial response to the COVID-19 pandemic in adults residing in Panama. Methods: A community sample of 480 adult residents of Panama completed a survey that included sociodemographic questions, COVID-19 related questions (e.g., health concerns regarding the virus, knowledge and behaviors in biosafety) and scales of stress, anxiety, depression, prosocial behavior, resilience, perceived social support, and insomnia. Results: Most of the participants (>60%) reported being negatively affected by the pandemic. Women experienced greater depression, anxiety, and stress symptoms than men, and age was negatively associated with depression, anxiety, and stress symptoms. Self-perceived health status and self-perceived social support were negatively associated with depression, anxiety, and stress symptoms. Self-perceived social isolation was positively associated with depression, anxiety, and stress symptoms. Psychiatric illness and insomnia were positively associated with depression, anxiety, and stress symptoms, whereas psychological resilience was negatively associated with depression, anxiety, and stress symptoms. Discussion: These results corroborate other studies regarding COVID-19 and mental health. This study highlights the need for specific prevention and intervention mechanisms related to the COVID-19 pandemic in different population groups. This is the first report of the psychological impact of COVID-19 in the general Panamanian population and one of the only studies in the Latin American region and, therefore, contributes to research in the Latino population and lower-middle income countries.
Purpose of Review Review work to create and evaluate educational materials that could serve as a primary prevention strategy to help both providers and patients in Panama, Colombia, and the USA reduce disease burden of Toxoplasma infections. Recent Findings Educational programs had not been evaluated for efficacy in Panama, USA, or Colombia. Summary Educational programs for high school students, pregnant women, medical students and professionals, scientists, and lay personnel were created. In most settings, short-term effects were evaluated. In Panama, Colombia, and USA, all materials showed short-term utility in transmitting information to learners. These educational materials can serve as a component of larger public health programs to lower disease burden from congenital toxoplasmosis. Future priorities include conducting robust longitudinal studies of whether education correlates with reduced adverse disease outcomes, modifying educational materials as new information regarding region-specific risk factors is discovered, and ensuring materials are widely accessible.
This study aimed to evaluate the effects of two common chemotherapy regimens on breast cancer (BC) survivors' cognition. The participants comprised 35 patients with BC who underwent two chemotherapy regimens, AC-T and TAC, and 24 matched healthy volunteers. The participants were assessed regarding cognitive function through Addenbrooke's Cognitive Examination and Cambridge Brain Science tests. The results represent the AC-T regimen to be more toxic than the TAC in domains of language, concentration, and visuospatial working memory (P-value =0.036, 0.008, and 0.031, respectively) and should be prescribed with caution in patients with BC suffering from baseline cognitive impairments.
he Caribbean is influenced by Sahara Dust Storms (SDS) every year. SDS can transport a diversity of microorganisms, including potential pathogens of humans, animals, and plants. In fact, SDS have been suggested as a source of Aspergillus sydowii, reported to cause aspergillosis disease in gorgonian sea fans. However, the diversity of fungal spores in SDS remains unknown and there are con- flicting studies as to whether A. sydowii spore are capable of crossing the Atlantic Ocean. In this study, we estimated the fungal diversity of the Saharan dust trapped on air filters during five days of a ship’s tra- jectory in the eastern Atlantic during a dust event. Also, we investigated whether SDS is a potential source of opportunistic fungal pathogens. We isolated 30 morphospecies including the ascomycetes Asper- gillus (33% of identified isolates), Thielavia (18%), Penicillium (12%), Chaetomium strumarium (3%), Periconia (2%), and Cladosporium sphaerosper- mum (1%). Many of these groups include opportun- istic pathogens. Species diversity was similar across days but with significant differences between Days 3 vs 5 and between hazy vs clear days. We report for the first time that Thielavia, Chaetomium strumarium and Periconia are present in SDS and are capable of surviving long-distance transport in SDS. The pres- ence of A. sydowii isolates is consistent with reports of SDS as a source of inoculum for sea fan aspergillo- sis. This could signify that SDS are carriers of viable, potentially pathogenic spores which can be deposited on terrestrial or aquatic substrates.
Background: The out-of-the-field absorbed dose affects the probability of primary second radiation-induced cancers. This is particularly relevant in the case of pediatric treatments. There are currently no methods employed in the clinical routine for the computation of dose distributions from stray radiation in radiotherapy. To overcome this limitation in the framework of conventional teletherapy with photon beams, two computational tools have been developed-one based on an analytical approach and another depending on a fast Monte Carlo algorithm. The purpose of this work is to evaluate the accuracy of these approaches by comparison with experimental data obtained from anthropomorphic phantom irradiations. Materials and methods: An anthropomorphic phantom representing a 5-year-old child (ATOM, CIRS) was irradiated considering a brain tumor using a Varian TrueBeam linac. Two treatments for the same planned target volume (PTV) were considered, namely, intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). In all cases, the irradiation was conducted with a 6-MV energy beam using the flattening filter for a prescribed dose of 3.6 Gy to the PTV. The phantom had natLiF : Mg, Cu, P (MCP-N) thermoluminescent dosimeters (TLDs) in its 180 holes. The uncertainty of the experimental data was around 20%, which was mostly attributed to the MCP-N energy dependence. To calculate the out-of-field dose, an analytical algorithm was implemented to be run from a Varian Eclipse TPS. This algorithm considers that all anatomical structures are filled with water, with the exception of the lungs which are made of air. The fast Monte Carlo code dose planning method was also used for computing the out-of-field dose. It was executed from the dose verification system PRIMO using a phase-space file containing 3x109 histories, reaching an average standard statistical uncertainty of less than 0.2% (coverage factor k = 1 ) on all voxels scoring more than 50% of the maximum dose. The standard statistical uncertainty of out-of-field voxels in the Monte Carlo simulation did not exceed 5%. For the Monte Carlo simulation the actual chemical composition of the materials used in ATOM, as provided by the manufacturer, was employed. Results: In the out-of-the-field region, the absorbed dose was on average four orders of magnitude lower than the dose at the PTV. For the two modalities employed, the discrepancy between the central values of the TLDs located in the out-of-the-field region and the corresponding positions in the analytic model were in general less than 40%. The discrepancy in the lung doses was more pronounced for IMRT. The same comparison between the experimental and the Monte Carlo data yielded differences which are, in general, smaller than 20%. It was observed that the VMAT irradiation produces the smallest out-of-the-field dose when compared to IMRT. Conclusions: The proposed computational methods for the routine calculation of the out-of-the-field dose produce results that are similar, in most cases, with the experimental data. It has been experimentally found that the VMAT irradiation produces the smallest out-of-the-field dose when compared to IMRT for a given PTV.
Species belonging to the Leishmania (Viannia) subgenus are important causative agents of cutaneous and mucocutaneous leishmaniasis in Central and South America. These parasites possess several distinctive biological features that are influenced by their genetics, population structure, and genome instability. To date, several studies have revealed varying degrees of genetic diversity within Leishmania species. Particularly, in species of the L. (Viannia) subgenus, a generalized high intraspecific genetic diversity has been reported, although, conflicting conclusions have been drawn using different molecular techniques. Despite being the most common Leishmania species circulating in Panama and Colombia, few studies have analyzed clinical samples of Leishmania panamensis using whole-genome sequencing, and their restricted number of samples has limited the information they can provide to understand the population structure of L. panamensis. Here, we used next generation sequencing (NGS) to explore the genetic diversity of L. panamensis within its endemic range, analyzing data from 43 isolates of Colombian and Panamanian origin. Our results show the occurrence of three well-defined geographically correlated groups, and suggests the possible occurrence of additional phylogeographic groups. Furthermore, these results support the existence of a mixed mode of reproduction in L. panamensis, with varying frequencies of events of genetic recombination occurring primarily within subpopulations of closely related strains. This study offers important insights into the population genetics and reproduction mode of L. panamensis, paving the way to better understand their population structure and the emergence and maintenance of key eco-epidemiological traits.
The soil fauna of the tropics remains one of the least known components of the biosphere. Long-term monitoring of this fauna is hampered by the lack of taxonomic expertise and funding. These obstacles may potentially be lifted with DNA metabarcoding. To validate this approach, we studied the ants, springtails and termites of 100 paired soil samples from Barro Colorado Island, Panama. The fauna was extracted with Berlese-Tullgren funnels and then either sorted with traditional taxonomy and known, individual DNA barcodes (“traditional samples”) or processed with metabarcoding (“metabarcoding samples”). We detected 49 ant, 37 springtail and 34 termite species with 3.46 million reads of the COI gene, at a mean sequence length of 233 bp. Traditional identification yielded 80, 111 and 15 species of ants, springtails and termites, respectively; 98%, 37% and 100% of these species had a Barcode Index Number (BIN) allowing for direct comparison with metabarcoding. Ants were best surveyed through traditional methods, termites were better detected by metabarcoding, and springtails were equally well detected by both techniques. Species richness was underestimated, and faunal composition was different in metabarcoding samples, mostly because 37% of ant species were not detected. The prevalence of species in metabarcoding samples increased with their abundance in traditional samples, and seasonal shifts in species prevalence and faunal composition were similar between traditional and metabarcoding samples. Probable false positive and negative species records were reasonably low (13–18% of common species). We conclude that metabarcoding of samples extracted with Berlese-Tullgren funnels appear suitable for the long-term monitoring of termites and springtails in tropical rainforests. For ants, metabarcoding schemes should be complemented by additional samples of alates from Malaise or light traps.
Coffee leaf rust caused by Hemileia vastatrix is the most devastating diseases of Coffea arabica. This study was under-taken to characterise the genetic diversity and structure of the fungal populations collected from major coffee-growing areas of Ethiopia using 17 Simple Sequence Repeat (SSR) polymorphic markers. Observed alleles per locus ranged from 2 to 13, with an average of 5.22. Diversity indices as, total Shannon diversity index and total Shannon pairwise diversity index were 0.89 and 0.92, respectively. The variation observed within population, was 92%. Most of the paired populations showed very low (<0.07) genetic differentiation values, corresponding to high levels of gene flow between populations. Populations of H. vastatrix in Ethiopia result highly variable, in contrast to studies from other coffee growing regions of the world, and the vast majority of genetic variation was distributed within all coffee growing districts of the country.
Purpose of Review Review comprehensive data on rates of toxoplasmosis in Panama and Colombia. Recent Findings Samples and data sets from Panama and Colombia, that facilitated estimates regarding seroprevalence of antibodies to Toxoplasma and risk factors, were reviewed. Summary Screening maps, seroprevalence maps, and risk factor mathematical models were devised based on these data. Studies in Ciudad de Panamá estimated seroprevalence at between 22 and 44%. Consistent relationships were found between higher prevalence rates and factors such as poverty and proximity to water sources. Prenatal screening rates for anti-Toxoplasma antibodies were variable, despite existence of a screening law. Heat maps showed a correlation between proximity to bodies of water and overall Toxoplasma seroprevalence. Spatial epidemiological maps and mathematical models identify specific regions that could most benefit from comprehensive, preventive healthcare campaigns related to congenital toxoplasmosis and Toxoplasma infection.
Background Various treatment approaches are being applied for recovery of gait after different medical conditions. Action observation is a new motor learning approach, which is considered as a complementary training to the conventional rehabilitation programs such as occupational therapy for this purpose. Objective To find out which patients benefit more from action observation training. Methods Electronic databases, including Scopus, PubMed, Web of Science, Science Direct, and PEDro were searched. Prospective studies published in peer-reviewed journals with full text available in English, which investigated the effect of action observation on gait and balance of patients with neurologic or musculoskeletal disorders, were included. The methodological quality of the studies was assessed by the Downs and Black checklist, and the information was presented based on the PICO style. Results Nineteen studies recruiting post-orthopedic patients (4 studies), patients with stroke (11 studies), and Parkinson’s disease (4 studies) fulfilled the eligibility criteria. Quality scores ranged from 51.85% to 81.48%. Balance and walking ability were the most reported primary outcomes. Conclusion Patients in the chronic phase of stroke might benefit more from action observation training plus occupational therapy in different aspects of gait than orthopedic patients and those with Parkinson’s disease.
Proton therapy enables to deliver highly conformed dose distributions owing to the characteristic Bragg peak and the finite range of protons. However, during proton therapy, secondary neutrons are created, which can travel long distances and deposit dose in out-of-field volumes. This out-of-field absorbed dose needs to be considered for radiation-induced secondary cancers, which are particularly relevant in the case of pediatric treatments. Unfortunately, no method exists in clinics for the computation of the out-of-field dose distributions in proton therapy. To help overcome this limitation, a computational tool has been developed based on the Monte Carlo code TOPAS. The purpose of this work is to evaluate the accuracy of this tool in comparison to experimental data obtained from an anthropomorphic phantom irradiation. An anthropomorphic phantom of a 5-year-old child (ATOM, CIRS) was irradiated for a brain tumor treatment in an IBA Proteus Plus facility using a pencil beam dedicated nozzle. The treatment consisted of three pencil beam scanning fields employing a lucite range shifter. Proton energies ranged from 100 to 165 MeV. A median dose of 50.4 Gy(RBE) with 1.8 Gy(RBE) per fraction was prescribed to the initial planning target volume (PTV), which was located in the cerebellum. Thermoluminescent detectors (TLDs), namely, Li-7-enriched LiF : Mg, Ti (MTS-7) type, were used to detect gamma radiation, which is produced by nuclear reactions, and secondary as well as recoil protons created out-of-field by secondary neutrons. Li-6-enriched LiF : Mg,Cu,P (MCP-6) was combined with Li-7-enriched MCP-7 to measure thermal neutrons. TLDs were calibrated in Co-60 and reported on absorbed dose in water per target dose (μGy/Gy) as well as thermal neutron dose equivalent per target dose (μSv/Gy). Additionally, bubble detectors for personal neutron dosimetry (BD-PND) were used for measuring neutrons (>50 keV), which were calibrated in a Cf-252 neutron beam to report on neutron dose equivalent dose data. The Monte Carlo code TOPAS (version 3.6) was run using a phase-space file containing 10 ¹⁰ histories reaching an average standard statistical uncertainty of less than 0.2% (coverage factor k = 1) on all voxels scoring more than 50% of the maximum dose. The primary beam was modeled following a Fermi–Eyges description of the spot envelope fitted to measurements. For the Monte Carlo simulation, the chemical composition of the tissues represented in ATOM was employed. The dose was tallied as dose-to-water, and data were normalized to the target dose (physical dose) to report on absorbed doses per target dose (mSv/Gy) or neutron dose equivalent per target dose (μSv/Gy), while also an estimate of the total organ dose was provided for a target dose of 50.4 Gy(RBE). Out-of-field doses showed absorbed doses that were 5 to 6 orders of magnitude lower than the target dose. The discrepancy between TLD data and the corresponding scored values in the Monte Carlo calculations involving proton and gamma contributions was on average 18%. The comparison between the neutron equivalent doses between the Monte Carlo simulation and the measured neutron doses was on average 8%. Organ dose calculations revealed the highest dose for the thyroid, which was 120 mSv, while other organ doses ranged from 18 mSv in the lungs to 0.6 mSv in the testes. The proposed computational method for routine calculation of the out-of-the-field dose in proton therapy produces results that are compatible with the experimental data and allow to calculate out-of-field organ doses during proton therapy.
The immunologic mechanisms that contribute to the response to Mycobacterium tuberculosis infection still represent a challenge in the clinical management and scientific understanding of tuberculosis disease. In this scenario, the role of the different cells involved in the host response, either in terms of innate or adaptive immunity, remains key for defeating this disease. Among this coordinated cell response, mast cells remain key for defeating tuberculosis infection and disease. Together with its effector’s molecules, membrane receptors as well as its anatomical locations, mast cells play a crucial role in the establishment and perpetuation of the inflammatory response that leads to the generation of the granuloma during tuberculosis. This review highlights the current evidences that support the notion of mast cells as key link to reinforce the advancements in tuberculosis diagnosis, disease progression, and novel therapeutic strategies. Special focus on mast cells capacity for the modulation of the inflammatory response among patients suffering multidrug resistant tuberculosis or in co-infections such as current COVID-19 pandemic.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
68 members
Marcelino Gutierrez
  • Center for Biodiversity and Drug Discovery
Rosa De Jesús
  • Center For Molecular Biology And Cell Disease
Ricardo Lleonart
  • Center For Molecular Biology And Cell Disease
Carmenza Spadafora
  • Center For Molecular Biology And Cell Disease
Luis C Mejía
  • Centro de Biodiversidad y Descubrimiento de Drogas
Panamá, Panama
Head of institution
K. S. Jagannatha Rao