Recent PublicationsView all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of episomally maintained DNA vectors to genetically modify dividing cells efficiently and stably, without the risk of integration-mediated genotoxicity, should prove to be a valuable tool in genetic research. In this study, we demonstrate the utility of Scaffold/Matrix Attachment Region (S/MAR) DNA vectors to model the restoration of a functional wild-type copy of the gene folliculin (FLCN) implicated in the renal cancer Birt-Hogg-Dubé (BHD). Inactivation of FLCN has been shown to be involved in the development of sporadic renal neoplasia in BHD. S/MAR-modified BHD tumor cells (named UOK257-FS) show restored stable FLCN expression and have normalized downstream TGFβ signals. We demonstrate that UOK257-FS cells show a reduced growth rate in vitro and suppression of xenograft tumor development in vivo, compared with the original FLCN-null UOK257 cell line. In addition, we demonstrate that mTOR signaling in serum-starved FLCN-restored cells is differentially regulated compared with the FLCN-deficient cell. The novel UOK257-FS cell line will be useful for studying the signaling pathways affected in BHD pathogenesis. Significantly, this study demonstrates the suitability of S/MAR vectors to successfully model the functional expression of a therapeutic gene in a cancer cell line and will aid the identification of novel cancer markers for diagnosis and therapy.Molecular Therapy-Nucleic Acids (2013) 2, e115; doi:10.1038/mtna.2013.40; published online 13 August 2013.
    Full-text · Article · Aug 2013 · Molecular Therapy - Nucleic Acids
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Rab proteins are a large family of GTP-binding proteins that regulate cellular membrane traffic and organelle identity. Rab proteins cycle between association with membranes and binding to RabGDI. Bound on membranes, each Rab has a very specific cellular location and it is this remarkable degree of specificity with which Rab GTPases recognize distinct subsets of intracellular membranes that forms the basis of their ability to act as key cellular regulators, determining the recruitment of downstream effectors to the correct membrane at the correct time. The molecular mechanisms controlling Rab localization remain poorly understood. Here, we present a fluorescence-based assay to investigate Rab GTPase membrane extraction and delivery by RabGDI. Using EGFP-Rab fusion proteins the amount of Rab:GDI complex obtained by GDI extraction of Rab proteins from HEK293 membranes could be determined, enabling control of complex concentration. Subsequent partitioning of the Rab GTPases into vesicles made up of artificial binary lipid mixtures showed for the first time, that the composition of the target membrane plays a key role in the localization of Rab proteins by sensing the stored curvature elastic energy in the membrane.
    No preview · Article · Jul 2013 · Molecular Membrane Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscle weakness in chronic obstructive pulmonary disease (COPD) carries a poor prognosis, therefore a non-invasive marker of this process could be useful. Reduced expression of muscle-specific microRNA (myomiRs) in quadriceps muscle in patients with COPD is associated with skeletal muscle weakness and changes in muscle fibre composition. Circulating exosomal miRNAs can be measured in blood, making them candidate biomarkers of biopsy phenotype. To determine whether plasma myomiR levels were associated with fibre size or fibre proportion, we measured myomiRs in plasma from patients with COPD and healthy controls. 103 patients with COPD and 25 age-matched controls were studied. Muscle-specific miRNA was elevated in the plasma of patients with COPD and showed distinct patterns. Specifically, miR-1 was inversely associated with fat-free mass in the cohort, whereas levels of miR-499 were more directly associated with strength and quadriceps type I fibre proportion. Two miRs not restricted to muscle in origin (miR-16 and miR-122) did not differ between patients and controls. Plasma miR-499 was also associated with muscle nuclear factor κB p50 but not p65 in patients with early COPD whereas plasma inflammatory cytokines were associated with miR-206 in patients with more advanced disease. Plasma levels of individual myomiRs are altered in patients with COPD but alone do not predict muscle fibre size or proportion. Our findings are consistent with an increase in muscle wasting and turnover associated with the development of skeletal muscle dysfunction and fibre-type shift in patients with stable COPD.
    Full-text · Article · Jun 2013 · Thorax
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.