39
341.89
8.77
152

Recent PublicationsView all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transgenic technologies conventionally rely on the oocyte as a substrate for genetic modification. Owing to their accessibility, however, male germ cells, including mature sperm, have material advantages for use in transgenesis. Here we have exploited lentiviruses to generate transgenic animals via the male germline. When pseudotyped lentiviral vectors encoding green fluorescent protein (GFP) were incubated with mouse spermatozoa, these sperm were highly successful in producing transgenics. Lentivirally transduced mouse spermatozoa were used in in vitro fertilization (IVF) studies, and when followed by embryo transfer, ≥42% of founders were found to be transgenic for GFP. Inverse PCR strategy for integration site analysis demonstrated integration of at least 1 or 2 copies of GFP in the transgenics, mapping to different chromosomes. GFP expression was detected in a wide range of murine tissues, including testis and the transgene was stably transmitted to a third generation of transgenic animals. This relatively simple, yet highly efficient, technique for generating transgenic animals by transducing spermatozoa with lentiviral vectors in vitro is a powerful tool for the study of fertilization/preimplantation development, vertical viral gene transmission, gene function and regulation, and epigenetic inheritance.-Chandrashekran, A., Sarkar, R., Thrasher, A., Fraser, S.E., Dibb, N., Casimir, C., Readhead, C., Winston, R. Efficient generation of transgenic mice by lentivirus-mediated modification of spermatozoa.
    Preview · Article · Dec 2013 · The FASEB Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: We have previously identified kinase suppressor of ras-1 (KSR1) as a potential regulatory gene in breast cancer. KSR1, originally described as a novel protein kinase, has a role in activation of mitogen-activated protein kinases. Emerging evidence has shown that KSR1 may have dual functions as an active kinase as well as a scaffold facilitating multiprotein complex assembly. Although efforts have been made to study the role of KSR1 in certain tumour types, its involvement in breast cancer remains unknown. Methods: A quantitative mass spectrometry analysis using stable isotope labelling of amino acids in cell culture (SILAC) was implemented to identify KSR1-regulated phosphoproteins in breast cancer. In vitro luciferase assays, co-immunoprecipitation as well as western blotting experiments were performed to further study the function of KSR1 in breast cancer. Results: Of significance, proteomic analysis reveals that KSR1 overexpression decreases deleted in breast cancer-1 (DBC1) phosphorylation. Furthermore, we show that KSR1 decreases the transcriptional activity of p53 by reducing the phosphorylation of DBC1, which leads to a reduced interaction of DBC1 with sirtuin-1 (SIRT1); this in turn enables SIRT1 to deacetylate p53. Conclusion: Our findings integrate KSR1 into a network involving DBC1 and SIRT1, which results in the regulation of p53 acetylation and its transcriptional activity.
    Full-text · Article · Oct 2013 · British Journal of Cancer
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinases play a pivotal role in regulating many aspects of biological processes, including development, differentiation and cell death. Within the kinome, 48 kinases (~10%) are classified as pseudokinases owing to the fact that they lack at least one conserved catalytic residue in their kinase domain. However, emerging evidence suggest that some pseudokinases, even without the ability to phosphorylate substrates, are regulators of multiple cellular signalling pathways. Among these is KSR1 (kinase suppressor of Ras 1), which was initially identified as a novel kinase in the Ras/Raf pathway. Subsequent studies showed that KSR1 mainly functions as a platform to assemble different cellular components thereby facilitating signal transduction. In the present article, we discuss recent findings regarding KSR1, indicating that it has dual activity as an active kinase as well as a pseudokinase/scaffolding protein. Moreover, the biological functions of KSR1 in human disorders, notably in malignancies, are also reviewed.
    Preview · Article · Aug 2013 · Biochemical Society Transactions
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.