Ibaraki University
  • Mito, Ibaraki-ken, Japan
Recent publications
The purpose of this study was to clarify the association between the level of midwifery skills evaluation and midwifery experience in maternity care among young midwives with two to four years of experience, excluding new midwives with one year of experience among those with less than five years of experience working at perinatal medical centers in Japan. The survey was conducted among consenting midwives in 38 cooperating facilities. The subjects of the survey were randomly selected from 407 perinatal mother and child healthcare centers in Japan, and 38 midwives who cooperated were surveyed. Maternity care skills (20 items on pregnancy, 41 items on labor, 34 items on the puerperium and neonatal period) in the training guide for newly-graduated midwives were used as survey items. Responses were received from 102 (42.1%) midwives, of which 99 (97.1%) were valid responses. Twenty-seven (27.3%) were in their second year of midwifery experience, 33 (33.3%) in their third year, and 29 (39.4%) in their fourth year. The percentage of "able to do" response was high for 17 items in , 37 items in , and 31 items in . The percentage of responses other than "possible" was high for items in the high-risk diagnosis and care in all periods. In terms of "maternal transport care" and "mental health follow-up of maternal women and families with children such as fetal abnormalities and deaths," and similar issues, midwives with 2 years of experience had a low score for "do it yourself." Clearly, young midwives still have items that are difficult to evaluate with confidence. Therefore, midwives have yet to acquire the skills necessary for high-risk cases compared to low-risk cases. We believe that these skills would improve as the midwife gains more experience.
In this paper, the effectiveness of reinforced concrete (RC) beams strengthened with prestressed basalt fibre-reinforced polymer (BFRP) laminates was parametrically studied through discrete displacement-coordinated finite element (FE) method. Three dimensional (3D) FE models were established based on experiments, and the reliability of the FE model was verified. The influences of material properties, prestress load level, reinforcement ratio, and shear span on the overall behavior were investigated. The results demonstrated that the optimal capacity of strengthened beam can be achieved in large shear span with low reinforcement ratio and high-strength concrete. The cracking load of RC beams was also significantly increased by strengthening with prestressed BFRP laminates. Then, polynomial equations were fitted to quantify the influences of different parameters on capacity enhancement. The shear span ratio was found to be the most important factor. In addition, the utilisation efficiency of BFRP is much higher than that of carbon FRP (CFRP) with the same section and prestress level due to the strong deformation ability.
During the development of the central nervous system (CNS), extremely large numbers of neurons are produced in a regular fashion to form precise neural circuits. During this process, neural progenitor cells produce different neurons over time due to their intrinsic gene regulatory mechanisms as well as extrinsic mechanisms. The Drosophila CNS has played an important role in elucidating the temporal mechanisms that control neurogenesis over time. It has been shown that a series of temporal transcription factors are sequentially expressed in neural progenitor cells and regulate the temporal specification of neurons in the embryonic CNS. Additionally, similar mechanisms are found in the developing optic lobe and central brain in the larval CNS. However, it is difficult to elucidate the function of numerous molecules in many different cell types solely by molecular genetic approaches. Recently, omics analysis using single-cell RNA-seq and other methods has been used to study the Drosophila nervous system on a large scale and is making a significant contribution to the understanding of the temporal mechanisms of neurogenesis. In this article, recent findings on the temporal patterning of neurogenesis and the contributions of cutting-edge technologies will be reviewed.
June-bearing strawberry cultivars have been widely grown in Japan. Since they are harvested in winter and spring, little produce is available in summer and autumn. To achieve stable year-round supply, we need to expand the production area of ever-bearing cultivars. Here, we examined whether it is possible to increase dry matter (DM) production and fruit yield by increasing the CO2 concentration within the plant canopy through local application to promote photosynthesis in summer and autumn protected culture. We investigated the CO2 concentration in the plant canopy, DM production characteristics, yield characteristics, fruit quality, projected leaf area, cumulative light interception, and light use efficiency. We confirmed that the CO2 concentration within the plant canopy could be increased in summer and autumn (Control; 398 ppm, CO2; 1280 ppm), significantly increasing DM production and total yield (Control; 349 g, CO2; 447.5 g). We consider that local application of CO2 increased the projected leaf area and thus cumulative light interception. This method may help to increase fruit yield in summer and autumn protected culture.
Marine isotope stage (MIS) 19 is considered to be the best orbital analog for the present interglacial. Consequently, clarifying the climatic features of this period can provide us with insights regarding a natural baseline for assessing future climate changes. A high-resolution radiolarian record from 800 to 750 ka (MIS 20 to MIS 18) was examined from the Chiba composite section (CbCS) of the Kokumoto Formation, including the Global Boundary Stratotype Section and Point for the lower–middle Pleistocene boundary on the Boso Peninsula on the Pacific side of central Japan. Millennial-scale oscillations in the Kuroshio warm and Oyashio cold currents were revealed by the Tr index, which is estimated using a simple equation based on radiolarian assemblages. The estimated Tr values ranged between 0.1 and 0.8 for MIS 18 through MIS 19, with minimum and maximum values corresponding to values observed off present day Aomori (41°N) and the Boso Peninsula (35°N), respectively. The observed patterns tended to be synchronous with the total radiolarian abundance associated with their production. Multiple maxima in radiolarian abundance occurred during periods of the Oyashio expanded mode before 785 ka and during periods of Kuroshio extension after 785 ka in MIS 19. Such increases in radiolarian abundance with the Kuroshio extension during MIS 19 are likely related to improvements in nutrient and photic environments with the development of a two-layer structure along the Kuroshio–Oyashio boundary zone. A similar pattern of millennial-scale climatic changes was also recognized in a precipitation record from the Sulmona Basin in central Italy, suggesting a close relationship with the CbCS record as a result of a large-scale climate system similar to the Arctic Oscillation in the northern hemisphere.
The deposition of insoluble radiocesium-bearing microparticles (CsMPs), which were released from the Fukushima Daiichi Nuclear Power Plant (F1NPP) accident in March 2011, has resulted in the widespread contamination of eastern Japan. Obviously, these deposited insoluble CsMPs may become the secondary contamination sources by atmospheric migration or other environmental transferring process; however, the understanding of the transport mechanism remains non-elucidation, and the relevant evidence has not been directly provided. This study, for the first time, provides the direct evidence for the resuspension of these insoluble CsMPs to the atmosphere from (1) proximity of ¹³⁷ Cs radioactivity and resemblance of the morphology and the elemental compositions of CsMPs in the samples of soil and aerosol derived from the same sampling site, (2) the special characteristics of the resuspended CsMPs of which the ratios of Na/Si, K/Si and/or Cs/Si were smaller than those from the initially released CsMPs collected at either long distance or near F1NPP, which can be ascribed to the slowly natural corrosion of CsMPs by the loss of the small amount of soluble contents in CsMPs, and (3) high CsMPs concentration of 10 granules/g in the surface soil of our sampling site and high resuspension frequency of CsMPs in spring when predominant suspended particles were soil dust. Specifically, 15 single CsMPs were successfully isolated from the aerosol filters collected by unmanned high-volume air samplers at a severely polluted area in Fukushima Prefecture, about 25 km away from F1NPP, from January 2015 to September 2019. The mean diameter of these CsMPs was 1.8 ± 0.5 μm, and the average ¹³⁷ Cs radioactivity was 0.35 ± 0.23 Bq/granule. The contribution rate of the resuspended CsMPs to the atmospheric radiocesium was estimated from the ratio of ¹³⁷ Cs radioactivity of a single CsMP to that of the aerosol filter to be of 23.9 ± 15.3%. There has been no considerable decreasing trend in the annual CsMP resuspension frequency.
This study investigates whether a novel estimation method based on machine learning can feasibly predict the readily biodegradable chemical oxygen demand (RB-COD) and slowly biodegradable COD (SB-COD) in municipal wastewater from the oxidation–reduction potential (ORP) data of anoxic batch experiments. Anoxic batch experiments were conducted with highly mixed liquor volatile suspended solids under different RB-COD and SB-COD conditions. As the RB-COD increased, the ORP breakpoint appeared earlier, and fermentation occurred in the interior of the activated sludge, even under anoxic conditions. Therefore, the ORP decline rates before and after the breakpoint were significantly correlated with the RB-COD and SB-COD, respectively (p < 0.05). The two biodegradable CODs were estimated separately using six machine learning models: an artificial neural network (ANN), support vector regression (SVR), an ANN-based AdaBoost, a SVR-based AdaBoost, decision tree, and random forest. Against the ORP dataset, the RB-COD and SB-COD estimation correlation coefficients of SVR-based AdaBoost were 0.96 and 0.88, respectively. To identify which ORP data are useful for estimations, the ORP decline rates before and after the breakpoint were separately input as datasets to the estimation methods. All six machine learning models successfully estimated the two biodegradable CODs simultaneously with accuracies of ≥0.80 from only ORP time-series data. Sensitivity analysis using the Shapley additive explanation method demonstrated that the ORP decline rates before and after the breakpoint obviously contributed to the estimation of RB-COD and SB-COD, respectively, indicating that acquiring the ORP data with various decline rates before and after the breakpoint improved the estimations of RB-COD and SB-COD, respectively. This novel estimation method for RB-COD and SB-COD can assist the rapid control of biological wastewater treatment when the biodegradable organic matter concentration dynamically changes in influent wastewater.
In this paper, we prove that for positive integers a, b, c, r and s with a≤r/2≤b≤r, s/2−1≤c≤s/2 and as≥(b−1)c, every bipartite graph G with bipartition (X,Y) such that degG(x)=r for all x∈X and degG(y)=s for all y∈Y has a factor F satisfying degF(x)∈{a,b} for x∈X and degF(y)∈{c,c+1} for y∈Y.
In the present study, we examined the effects of ionic strength and temperature for adsorption of tetrakis-N-methylpyridyl porphyrin (TMPyP) on mesoporous silica with 7.0 nm in pore diameter. The adsorption of TMPyP in 10 mM phosphate buffer solutions containing 0–150 mM NaCl showed linear adsorption isotherm plotted as inverse of the adsorption amount of TMPyP versus inverse of the equilibrium solution concentration of TMPyP. From the analysis of the adsorption isotherm by electrostatically modified Langmuir model, decrease in apparent adsorption constant with increasing the ionic strength was ascribed to the surface charge screening by electrolyte ions. In the temperature dependence on the TMPyP adsorption, non-linear van’t Hoff plots were analyzed by including heat capacity change during adsorption. The results of the van’t Hoff analysis indicated that the TMPyP adsorption at low temperature was exothermic and enthalpy-driven reaction, whereas it became endothermic and entropy-driven reaction with temperature elevation. In addition, the surface diffusivity was suggested as a primary factor to govern the maximum adsorption amount of TMPyP on mesoporous silica.
Inorganic chemical compositions are determined for a series of ores from three bedded manganese deposits, that is, Kitaichi, Teranosawa, and Maruyama, in the Fukaura area, northeast Japan. The deposits occur as layers or lenses conformably in sedimentary or pyroclastic rocks of the Odoji formation of the Onnagawa stage in the Neogene period. The ores are composed of lower goethite ore and upper todorokite ore. The ores in the bedded manganese deposits are anomalously high in certain elements: t‐Fe2O3 (max. 51.2%), P2O5 (0.34%), As (9200 ppm), and Pb (600 ppm) in the goethite ore, and MnO (48.5%), Ba (28,000 ppm), Co (560 ppm), Mo (660 ppm), Ni (200 ppm), Tl (32 ppm), V (530 ppm), and W (520 ppm) in the todorokite ore. In the Kitaichi profile, there is distinct compositional zoning, that is, Fe‐As‐Y, P‐Pb, Cu, Co‐W‐Tl, and Mn‐Ba‐Mo‐Sr‐V, in ascending order. Based on the occurrences and chemical compositions of the Fukaura manganese deposits and the geological and paleoceanographic backgrounds, hydrothermal input or upwelling of anaerobic stratified water would be a possible source of elements of initial ferromanganese deposits. The zoning would be made by early diagenetic redistribution process of manganese from initial Fe‐Mn deposits, left residual products of goethite ore at the original horizon. Distinct compositional zoning would be made by the different adsorption behavior of goethite and todorokite for minor elements during early diagenesis. Inorganic chemical compositions are determined for a series of ores from three bedded manganese deposits, that is, Kitaichi, Teranosawa, and Maruyama, in the Fukaura area, northeast Japan. Based on the occurrences and chemical compositions of the Fukaura manganese deposits and the geological and paleoceanographic backgrounds, hydrothermal input or upwelling of anaerobic stratified water would be a possible source of elements of initial ferromanganese deposits. Distinct compositional zoning would be made by the different adsorption behavior of goethite and todorokite for minor elements during early diagenesis.
Most of the current seismic structural health monitoring technology depends on the acceleration records observed by the accelerometers installed in buildings. Recently, however, the Internet of things (IoT) has evolved, and more digital image data are utilized for various purposes than before. Since the image data during and after the earthquakes include various information including various types of damage, it is expected that it enables a new way of monitoring building damage to facilitate an agile and reasonable judgment on continuous use of a building after an earthquake. The building damage to be used for the judgement include the damage of structural and non-structural elements. This paper proposes, as a first step, a practical method of identifying parameters to estimate structural damage by using the building motion during an earthquake recorded as a single moving image. From a single moving image of seismic response of building, the inter-story drift angle and velocity of each floor are estimated by calculating the optical flow representing the velocity of each floor in the image coordinate system using the image processing methods. The structural parameters such as story stiffness, natural period and damping ratio are estimated using the recursive subspace state-space system identification method (recursive 4SID) based identification algorithm. The proposed method was verified using the results of a shaking table experiment to have the same accuracy as the conventional method using the records from accelerometer and displacement meter. The results of this study are summarized as follows: 1) By applying the optical flow calculation method proposed in this study, a more stable and precise inter-story drift was obtained compared with those by the conventional optical flow method. 2) The inter-story drift angles, including the residual drift, obtained by the proposed method agreed well with the measurement results. 3) The results of system identification by the proposed method had almost the same accuracy as the results by the accelerometer in terms of the change of the natural period and story stiffness of a building due to nonlinear building response. 4) The proposed method successfully identifies the change of the relationships between the story shear force and the inter-story drift during earthquake excitation. The tendency of the story stiffness to decrease immediately after the inter-story drift angle increased was observed.
Nontrivial quantum states can be realized in the vicinity of the quantum critical point (QCP) in many strongly correlated electron systems. In particular, an emergence of unconventional superconductivity around the QCP strongly suggests that the quantum critical fluctuations play a central role in the superconducting pairing mechanism. However, a clear signature of the direct coupling between the superconducting pairing states and the quantum criticality has not yet been elucidated by the microscopic probes. Herein, we present muon spin rotation/relaxation and neutron diffraction measurements in the superconducting dome of CeCo(In 1 − x Zn x ) 5 . It was found that a magnetically ordered state develops at x ≥ 0.03, coexisting with the superconductivity. The magnitude of the ordered magnetic moment is continuously reduced with decreasing x , and it disappears below x ∼ 0.03, indicating a second-order phase transition and the presence of the QCP at this critical Zn concentration. Furthermore, the magnetic penetration depth diverges toward the QCP. These facts provide evidence for the intimate coupling between quantum criticality and Cooper pairing.
Impact hammer testing is a regular structure inspection method for detecting surface and internal damages. Inspectors use the sound from impact hammer testing to determine the damaged area. However, manual impact hammer testing cannot meet the reliable accuracy for small damages, such as concrete cracks, and due to the shortage of experienced workers, a reliable tool is needed to evaluate the hammering sound. Therefore, to improve the detection accuracy, this study proposes an automatic crack identification process of impact hammer testing. Three approaches are used to identify crack characteristics, such as width, depth, and location, based on fast Fourier transformation for the hammering sound. To determine the relationship between damaged and intact information values, the first and second approaches use dominant frequency (\(D_{f}\)) and frequency feature value (\(V_{f}\)), respectively, whereas the last one uses Mel-frequency cepstral coefficients (MFCCs). Six concrete specimens with different crack widths and depths were fabricated to validate the three approaches. The experimental results reveal that although \(D_{f}\) can to detect the damage, it cannot classify its depth and width. Furthermore, \(V_{f}\) indicates the cracks, which are 20-mm deep. Three different artificial-intelligence classification algorithms were used to validate the MFCC approach, fuzzy rule, gradient boosted trees, and support vector machine (SVM). The three algorithms are applied and evaluated to enhance the acoustic impact hammer testing. The results reveal that the SVM algorithm confirms the ability and effectiveness for accurately identifying the concrete fine cracks that are 0.2-mm wide and 40-mm deep.
Identification of early biomarkers of stress is important for preventing mood and anxiety disorders. Saliva is an easy-to-collect and non-invasive diagnostic target. The aim of this study was to characterize the changes in salivary whole microRNAs (miRNAs) and metabolites in mice subjected to subchronic and mild social defeat stress (sCSDS). In this study, we identified seven upregulated and one downregulated miRNAs/PIWI-interacting RNA (piRNA) in the saliva of sCSDS mice. One of them, miR-208b-3p, which is reported as a reliable marker for myocardial infarction, was upregulated in the saliva of sCSDS mice. Histological analysis showed frequent myocardial interstitial fibrosis in the heart of such mice. In addition, gene ontology and pathway analyses suggested that the pathways related to energy metabolism, such as the oxidative phosphorylation and the pentose phosphate pathway, were significantly related to the miRNAs affected by sCSDS in saliva. In contrast, salivary metabolites were not significantly changed in the sCSDS mice, which is consistent with our previous metabolomic study on the plasma of sCSDS mice. Taken in the light of previous studies, the present study provides novel potential stress biomarkers for future diagnosis using saliva.
Alcea rosea, in the family Malvaceae, is a biennial plant native to China and is grown typically for gardening in Korea (Lee 2003). Seven microcyclic Puccinia species have been reported on A. rosea: P. heterogenea, P. heterospora, P. lobata, P. malvacearum, P. platyspora, P. sherardiana, and P. modiolae (Demers et al. 2015; Aime and Abbasi 2018). In early May 2022, characteristic symptoms of rust were observed on four of ten seedlings of A. rosea purchased at a wholesale nursery (36°50′19.8″N, 128°55′28.7″E) in Bonghwa, Korea. Rust spots were present on almost 90% of the 1,000 seedlings of A. rosea in that nursery during our survey in late May. Through a distribution survey from June to July 2022, similar symptomatic leaves were additionally collected from the leaves of A. rosea grown in gardens at five sites in Gimcheon (two sites), Gumi (one), Seongju (one), and Busan (one). Spots were yellow-orange the center surrounded by chlorotic haloes on the adaxial leaf surface, and reddish-brown or dark brown pustules on the abaxial leaf surface. Over time, the spots enlarged and coalesced, causing the decay of large sections of the leaves, and heavily infected leaves fell early. Spermogonia, produced at the center of the chlorotic spot on the adaxial leaf surface, were subepidermal, obovoid, and 113.2–164.5 × 97.6–153.3 μm in size. Telia were reddish-brown to dark brown, round, mostly grouped, 0.28–0.61 mm in diameter, and mainly formed on the abaxial leaf surface but sometimes on the adaxial leaf surface also. Teliospores were two-celled, but rarely one- or three-celled, and were fusoid and 37. 6–110 × 12.4–21.5 μm in size; the wall was yellowish or almost colorless, smooth, 1.2–2.6 μm thick at the sides, and up to 7.4 μm thick at the apex. The morphological characteristics were similar to those of P. modiolae, although the teliospores in our study were longer than those observed by Aime and Abbasi (2018). For phylogenetic analysis, genomic DNA was extracted from the teliospores of each regional specimen. Partial 18S, internal transcribed spacer (ITS), and partial 28S sequences were amplified using primers NS1, ITS4, ITS5, and LR11. The PCR products were sequenced (Celemics, Seoul, Korea) and deposited in GenBank. The ITS-partial large subunit (LSU) sequence and 28S sequences had 100% homology with other P. modiolae sequences deposited in GenBank (accession numbers are shown in Fig. 2). In the phylogenetic trees of the ITS and LSU sequences, the isolates collected in this study were grouped with the reference sequences of P. modiolae, including the Korean isolate (ON631218) recently reported on Malva verticillata by Lee et al. (2022). For the pathogenicity test, the teliospores with germinating basidiospores were suspended in sterile distilled water and smeared on the upper surface of asymptomatic A. rosea leaves in August. The inoculated plants were sprayed with distilled water and kept in the dark with saturated moisture for 24 h in an isolated glass house of the Animal & Plant Quarantine Agent. After 2 weeks, typical rust spots and telia of P. modiolae were observed on the leaves of the inoculated plants, but not in the control plants, which were only sprayed with distilled, sterilized water and otherwise treated similarly to the inoculated plants. The results of this study show that the casual fungus is P. modiolae, which has been commonly found in A. rosea in Korea. To the best of our knowledge, this is the first report of P. modiolae in A. rosea in Korea.
Although network management tasks are highly automated using big data and artificial intelligence technologies, when an unforeseen cybersecurity problem or fault scenario occurs, administrators sometimes directly analyze system data to make a heuristic decision. However, a wide variety of information is required to address complex cybersecurity risks, whereas current systems are focused on narrowing the candidates of information. In this study, we propose a multiagent-based data presentation mechanism (MADPM) that consists of agents operating data-processing tools that store and analyze network data. Agents in MADPM interact with other agents to form data-processing sequences. In this process, we design not only the composition of the sequence according to requirements, but also a mechanism to expand it to enable multifaceted analysis that supports heuristic reasoning. We tested five case studies in the prototype system implemented in an experimental network. The results indicated that the multifaceted presentation of data can support administrators more than the selected single-faceted optimal presentation. The final outcome of our proposed approach is the provision of a multifaceted and cross-system data presentation for heuristic inference in network management tasks.
Extracellular electron transfer (EET) is a process via which certain microorganisms, such as bacteria, exchange electrons with extracellular materials by creating an electrical link across their membranes. EET has been studied for the reactions on solid materials such as minerals and electrodes with implication in geobiology and biotechnology. EET-capable bacteria exhibit broad phylogenetic diversity, and some are found in environments with various types of electron acceptors/donors not limited to electrodes or minerals. Oxygen has also been shown to serve as the terminal electron acceptor for EET of Pseudomonas aeruginosa and Faecalibacterium prausnitzii. However, the physiological significance of such oxygen-terminating EETs, as well as the mechanisms underlying them, remain unclear. In order to understand the physiological advantage of oxygen-terminating EET and its link with energy metabolism, in this review, we compared oxygen-terminating EET with aerobic respiration, fermentation, and electrode-terminating EET. We also summarized benefits and limitations of oxygen-terminating EET in a biofilm setting, which indicate that EET capability enables bacteria to create a niche in the anoxic zone of aerobic biofilms, thereby remodeling bacterial metabolic activities in biofilms.
Implantable ventricular assist devices (iVADs) are used for severe heart failure therapy. A flow rate estimation method is required for adequate control of the blood pump flow rate without using a flow meter in iVAD therapy. We developed a flow rate estimation method using the eccentric position of a magnetically levitated (maglev) impeller determined by radial passive stability. This estimation method meets clinical requirements because of high estimation accuracy even under varying blood viscosity (pump Reynolds number, Rep). In this study, a computational fluid dynamics (CFD) analysis was performed to clarify the basis of the maglev impeller passive stability, aiming at clinical application of this method. First, no significant variation in the pump pressure distribution, which determined the impeller's passively stabilized position, was observed under typical blood pump operating conditions (Rep = 35000–63000). In contrast, the working fluid density change affected the estimation accuracy by changing the pump characteristics. However, its effect on the estimation accuracy was less than 1% because the blood density can only change within a narrow range. These results indicate that the estimation method can be applied to other devices with a passively stabilized impeller. Additionally, CFD analysis indicates that the variation in the pump flow path design based on radial clearance can change the impeller radial position, the radial hydraulic force exerted on the impeller, and its magnitude with respect to the pump flow rate. The CFD results suggest that the resolution of the method can be adjusted by changing the flow path design of the radial clearance. However, the radial hydraulic fluid direction was almost constant in the radial clearance range of 1.0–3.0 mm. Therefore, the variation in the impeller radial position direction with respect to the pump flow rate did not change significantly with the radial clearance design under the present analysis conditions. However, the rate of variation in the impeller radial position with respect to the pump flow rate, which determines the accuracy of the estimation method, can be adjusted with the radial clearance design. The estimation method, which has remarkable characteristics, evaluated in this research has the potential for use in clinical practice.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
775 members
Yuji Miyaguchi
  • Department of Biological Production Science
Seiji Mori
  • Graduate School of Science and Engineering
Masakazu Komatsuzaki
  • College of Agriculture
Masaki Unno
  • Graduate School of Science and Engineering
Shingo Kikuta
  • College of Agriculture
Information
Address
2-1-1 Bunkyo, 310-8512, Mito, Ibaraki-ken, Japan
Website
http://www.ibaraki.ac.jp
Phone
+81 29-228-8600