Hong Kong Baptist University
Recent publications
Triclosan (TCS) is a ubiquitous antimicrobial used in daily consumer products. Previous reports have shown that TCS could induce hepatotoxicity, endocrine disruption, disturbance on immune function and impaired thyroid function. Kidney is critical in the elimination of toxins, while the effects of TCS on kidney have not yet been well-characterized. The aim of the present study was to investigate the effects of TCS exposure on kidney function and the possible underlying mechanisms in mice. Male C57BL/6 mice were orally exposed to TCS with the doses of 10 and 100 mg/(kg•day) for 13 weeks. TCS was dissolved in dimethyl sulfoxide (DMSO) and diluted by corn oil for exposure. Corn oil containing DMSO was used as vehicle control. Serum and kidney tissues were collected for study. Biomarkers associated with kidney function, oxidative stress, inflammation and fibrosis were assessed. Our results showed that TCS could cause renal injury as was revealed by increased levels of renal function markers including serum creatinine, urea nitrogen and uric acid, as well as increased oxidative stress, pro-inflammatory cytokines and fibrotic markers in a dose dependent manner, which were more significantly in 100 mg/(kg•day) group. Mass spectrometry-based analysis of metabolites related with lipid metabolism demonstrated the occurrence of lipid accumulation and defective fatty acid oxidation in 100 mg/(kg•day) TCS-exposed mouse kidney. These processes might lead to lipotoxicity and energy depletion, thus resulting in kidney fibrosis and functional decline. Taken together, the present study demonstrated that TCS could induce lipid accumulation and fatty acid metabolism disturbance in mouse kidney, which might contribute to renal function impairment. The present study further widens our insights into the adverse effects of TCS.
Energy recovery from carbonaceous solid waste has great potential for waste management and clean sustainable energy production. In this study, incorporating co-hydrothermal carbonization of food waste digestate to improve the gasification of wood waste hydrochar was novelly proposed. Based on the metal compositions and surface properties, the gasification characteristics of the hydrochar were investigated at different temperatures using a thermogravimetric analyzer (TGA). The results indicated that the hydrochar prepared by co-hydrothermal carbonization had abundant surface functional groups and metal components such as calcium (up to 124.25 mg g⁻¹). The addition of food waste digestate significantly improved the gasification activity (up to 7.2 folds at 900 °C) of the hydrochar and reduced the gasification reaction time. Furthermore, the gasification activity of hydrochar was positively correlated with the metal composition content. Both volumetric and grain models showed good fitting effects, and the apparent activation energy of hydrochar gasification for both models was in the range of 121.03–201.37 kJ mol⁻¹. This novel pathway advocated here for the efficient co-conversion of solid waste provides a new perspective for the large-scale utilization of solid waste.
Background: Drug resistance to sorafenib greatly limited the benefits of treatment in patients with hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) participate in the development of drug resistance. The key miRNA regulators related to the clinical outcome of sorafenib treatment and their molecular mechanisms remain to be identified. Methods: The clinical significance of miRNA-related epigenetic changes in sorafenib-resistant HCC was evaluated by analyzing publicly available databases and in-house human HCC tissues. The biological functions of miR-23a-3p were investigated both in vitro and in vivo. Proteomics and bioinformatics analyses were conducted to identify the mechanisms that regulating miR-23a-3p. Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were used to validate the binding relationship of miR-23a-3p and its targets. Results: We found that miR-23a-3p was the most prominent miRNA in HCC, which was overexpressed in sorafenib non-responders and indicated poor survival and HCC relapse. Sorafenib-resistant cells exhibited increased miR-23a-3p transcription in an ETS Proto-Oncogene 1 (ETS1)-dependent manner. CRISPR-Cas9 knockout of miR-23a-3p improved sorafenib response in HCC cells as well as orthotopic HCC tumours. Proteomics analysis suggested that sorafenib-induced ferroptosis was the key pathway suppressed by miR-23a-3p with reduced cellular iron accumulation and lipid peroxidation. MiR-23a-3p directly targeted the 3'-untranslated regions (UTR) of ACSL4, the key positive regulator of ferroptosis. The miR-23a-3p inhibitor rescued ACSL4 expression and induced ferrotoptic cell death in sorafenib-treated HCC cells. The co-delivery of ACSL4 siRNA and miR-23a-3p inhibitor abolished sorafenib response. Conclusion: Our study demonstrates that ETS1/miR-23a-3p/ACSL4 axis contributes to sorafenib resistance in HCC through regulating ferroptosis. Our findings suggest that miR-23a-3p could be a potential target to improve sorafenib responsiveness in HCC patients.
Background Parkinson’s disease (PD) is a prevalent and debilitating condition. Conventional medications cannot control all symptoms and may inflict adverse effects. A survey reported that Chinese herbal medicine (CHM) is frequently sought. Existing CHM trials were contradictory and often of poor quality due to lack of methodological rigor. A national clinical guideline was drafted in China with diagnostic criteria and treatment strategy of Chinese medicine (CM) patterns subgroups of PD. The suggested CHM were found to exhibit neuroprotective effect in in vitro and in vivo studies. This trial aims to preliminarily assess the effect of CHM prescribed based on pattern differentiation on PD symptoms and patients’ quality of life, and evaluate the feasibility of the trial design for a future large-scale trial. Methods This trial will be a pilot assessor- and data analyst blind, add-on, randomised, controlled, pragmatic clinical trial. 160 PD patients will be recruited and randomised into treatment or control groups in a 1:1 ratio. The trial will be conducted over 32 weeks. PD patients in the treatment group will be stratified into subgroups based on CM pattern and receive CHM accordingly in addition to conventional medication (ConM). The control group will receive ConM only. The primary outcome will be part II of the Movement Disorder Society Sponsored Revision of Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). Secondary outcomes will include part and total scores of MDS-UPDRS, domain and total scores of Non-motor symptom scale (NMSS). Adverse events will be monitored by monthly follow-ups and questionnaires. Mixed models will be used to analyse data by Jamovi and R. Expected outcomes The success of our trial will show that the pragmatic design with subgroup differentiation is feasible and can produce reliable results. It will also provide preliminary data of the effect of CHM on improving clinical outcomes and quality of PD patients. Data collected will be used to optimize study design of the future large-scale clinical study. Ethical clearance Ethical clearance of this study was given by the Research Ethics Committee of Hong Kong Baptist University (REC/20-21/0206). Trial registration This trial is registered on ClinicalTrials.gov (NCT05001217, Date: 8/10/2021, https://clinicaltrials.gov/ct2/show/NCT05001217 ). Type of manuscript: clinical trial protocol (date: 3 rd November, 2021, version 1)
Fine particulate matter (PM2.5) is associated with increased risks of Alzheimer's disease (AD), yet the toxicological mechanisms of PM2.5 promoting AD remain unclear. In this study, wild-type and APP/PS1 transgenic mice (AD mice) were exposed to either filtered air (FA) or PM2.5 for eight weeks with a real-world exposure system in Taiyuan, China (mean PM2.5 concentration in the cage was 61 μg/m³). We found that PM2.5 exposure could remarkably aggravate AD mice's ethological and brain ultrastructural damage, along with the elevation of the pro-inflammatory cytokines (IL-6 and TNF-α), Aβ-42 and AChE levels and the decline of ChAT levels in the brains. Based on high-throughput sequencing results, some differentially expressed (DE) mRNAs and DE miRNAs in the brains of AD mice after PM2.5 exposure were screened. Using RT-qPCR, seven DE miRNAs (mmu-miR-193b-5p, 122b-5p, 466h-3p, 10b-5p, 1895, 384–5p, and 6412) and six genes (Pcdhgb8, Unc13b, Robo3, Prph, Pter, and Tbata) were evidenced the and verified. Two miRNA-target gene pairs (miR-125b-Pcdhgb8 pair and miR-466h-3p-IL-17Rα/TGF-βR2/Aβ-42/AChE pairs) were demonstrated that they were more related to PM2.5-induced brain injury. Results of Gene Ontology (GO) pathways and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways predicted that synaptic and postsynaptic regulation, axon guidance, Wnt, MAPK, and mTOR pathways might be the possible regulatory mechanisms associated with pathological response. These revealed that PM2.5-elevated pro-inflammatory cytokine levels and PM2.5-altered neurotransmitter levels in AD mice could be the important causes of brain damage and proposed the promising miRNA and mRNA biomarkers and potential miRNA-mRNA interaction networks of PM2.5-promoted AD.
Background Tea trees originated in southwest China 60 million or 70 million years ago. Written records show that Chinese ancestors had begun drinking tea over 3000 years ago. Nowadays, with the aging of populations worldwide and more people suffering from non-communicable diseases or poor health, tea beverages have become an inexpensive and fine complementary and alternative medicine (CAM) therapy. At present, there are 3 billion people who like to drink tea in the world, but few of them actually understand tea, especially on its development process and the spiritual and cultural connotations. Methods We searched PubMed, Google Scholar, Web of Science, CNKI, and other relevant platforms with the key word “tea”, and reviewed and analyzed tea-related literatures and pictures in the past 40 years about tea’s history, culture, customs, experimental studies, and markets. Results China is the hometown of tea, tea trees, tea drinking, and tea culture. China has the oldest wild and planted tea trees in the world, fossil of a tea leaf from 35,400,000 years ago, and abundant tea-related literatures and art works. Moreover, tea may be the first Chinese herbal medicine (CHM) used by Chinese people in ancient times. Tea drinking has many benefits to our physical health via its antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, and anti-obesity activities. At the moment, COVID-19 is wreaking havoc across the globe and causing severe damages to people’s health and lives. Tea has anti-COVID-19 functions via the enhancement of the innate immune response and inhibition of viral growth. Besides, drinking tea can allow people to acquire a peaceful, relaxed, refreshed and cheerful enjoyment, and even longevity. According to the meridian theory of traditional Chinese medicine, different kinds of tea can activate different meridian systems in the human body. At present, black tea (fermented tea) and green tea (non-fermented tea) are the most popular in the world. Black tea accounts for over 90% of all teas sold in western countries. The world’s top-grade black teas include Qi Men black in China, Darjeeling and Assam black tea in India, and Uva black tea in Sri Lanka. However, all top ten famous green teas in the world are produced in China, and Xi Hu Long Jing tea is the most famous among all green teas. More than 700 different kinds of components and 27 mineral elements can be found in tea. Tea polyphenols and theaflavin/thearubigins are considered to be the major bioactive components of black tea and green tea, respectively. Overly strong or overheated tea liquid should be avoided when drinking tea. Conclusions Today, CAM provides an array of treatment modalities for the health promotion in both developed and developing countries all over the world. Tea drinking, a simple herb-based CAM therapy, has become a popular man-made non-alcoholic beverage widely consumed worldwide, and it can improve the growth of economy as well. Tea can improve our physical and mental health and promote the harmonious development of society through its chemical and cultural elements.
Framed by social learning theory, the study examines a set of personal and social factors determining off-task social media multitasking inside university classrooms. We aim to clarify the relationships between social media multitasking and self-efficacy, intrinsic motivation, multitasking preference as well as peer distraction, and to elucidate the interactive relationships between these factors. Questionnaire data from 203 university students in China show that academic self-efficacy fully mediates the association between intrinsic motivation and off-task multitasking. Moreover, multitasking preference partially mediates the association between peer distraction and off-task multitasking during class time. The findings of the study contribute to a deeper understanding of why students multitask during class, which can inform the development of strategies for combating social media distraction and enhancing students’ learning engagement.
Background Fibroblast-like synoviocytes (FLS) have cancer cell-like characteristics, such as abnormal proliferation and resistance to apoptosis, and play a pathogenic role in rheumatoid arthritis (RA). Hyperproliferation of RA-FLS that can be triggered by the activation of interleukin-6/signal transducer and activator of transcription 3 (IL-6/STAT3) signaling destructs cartilage and bone in RA patients. Chrysoeriol is a flavone found in medicinal herbs such as Chrysanthemi Indici Flos (the dried capitulum of Chrysanthemum indicum L.). These herbs are commonly used in treating RA. Chrysoeriol has been shown to exert anti-inflammatory effects and inhibit STAT3 signaling in our previous studies. This study aimed to determine whether chrysoeriol inhibits hyperproliferation of RA-FLS, and whether inhibiting STAT3 signaling is one of the underlying mechanisms. Methods IL-6/soluble IL-6 receptor (IL-6/sIL-6R)-stimulated RA-FLS were used to evaluate the effects of chrysoeriol. CCK-8 assay and crystal violet staining were used to examine cell proliferation. Annexin V-FITC/PI double staining was used to detect cell apoptosis. Western blotting was employed to determine protein levels. Results Chrysoeriol suppressed hyperproliferation of, and evoked apoptosis in, IL-6/sIL-6R-stimulated RA-FLS. The apoptotic effect of chrysoeriol was verified by its ability to cleave caspase-3 and caspase-9. Mechanistic studies revealed that chrysoeriol inhibited activation/phosphorylation of Janus kinase 2 (JAK2, Tyr1007/1008) and STAT3 (Tyr705); decreased STAT3 nuclear level and down-regulated protein levels of Bcl-2 and Mcl-1 that are transcriptionally regulated by STAT3. Over-activation of STAT3 significantly diminished anti-proliferative effects of chrysoeriol in IL-6/sIL-6R-stimulated RA-FLS. Conclusions We for the first time demonstrated that chrysoeriol suppresses hyperproliferation of RA-FLS, and suppression of JAK2/STAT3 signaling contributes to the underlying mechanisms. This study provides pharmacological and chemical justifications for the traditional use of chrysoeriol-containing herbs in treating RA, and provides a pharmacological basis for developing chrysoeriol into a novel anti-RA agent.
Background KRAS mutation is one of the dominant gene mutations in colorectal cancer (CRC). Up to present, targeting KRAS for CRC treatment remains a clinical challenge. WNT974 (LGK974) is a porcupine inhibitor that interferes Wnt signaling pathway. Artesunate (ART) is a water-soluble semi-synthetic derivative of artemisinin. Methods The synergistic effect of ART and WNT974 combination in reducing CRC cell viability was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RT-PCR was utilized for the mRNA levels of KRAS, CUL7, ANAPC2, UBE2M, RNF123, SYVN1, or β-TrCP. Western blot assay was utilized for the protein levels of NRAS, HRAS, KRAS, ANAPC2, β-TrCP, GSK-3β, p-Akt (Ser473), t-Akt, p-PI3K (Tyr458), t-PI3K, p-mTOR (Ser2448), t-mTOR. Xenograft mouse model assay was performed for the anti-CRC effect of combination of ART and WNT974 in vivo. IHC assay was utilized for the levels of KRAS, β-TrCP, GSK-3β or ANAPC2 in tumor tissues. Results Our study shows that the combination of WNT974 and ART exhibits synergistic effect in reducing CRC growth. The combination treatment significantly reduces KRAS protein level and activity in CRC cells. Interestingly, the combination treatment increases E3 ligases ANAPC2 expression. Our data show that overexpression of ANAPC2 significantly reduces KRAS protein levels, which is reversed by MG132. Knockdown of ANAPC2 in CRC abolishes the combination treatment-reduce KRAS expression. Besides, the treatment also increases the expressions of GSK-3β and E3 ligase β-TrCP that is known to degrade GSK-3β-phosphorylated KRAS protein. Knockdown of β-TrCP- and inhibition of GSK-3β abolish the combination treatment-induce KRAS ubiquitination and reduction in expression. Last but not least, combination treatment suppresses PI3K/Akt/m-TOR signaling pathway. Conclusions Our data clearly show that the combination treatment significantly enhances KRAS protein degradation via the ubiquitination ubiquitin–proteasome pathway, which is also demonstrated in xenograft mouse model. The study provides strong scientific evidence for the development of the combination of WNT974 and ART as KRAS-targeting therapeutics for CRC treatment.
Objective To investigate how the ulcerative colitis (UC) be treated with Chinese herbal medicines (CHM), using Chinese medicine (CM) pattern ( zheng ) identification, in the current clinical practice. Methods A total of 7 electronic databases were systematically searched for UC clinical studies with CHM interventions (including single herbs and CHM formulas) published in English and Chinese from the date of their inception to November 25, 2020. Descriptive statistics were adopted to demonstrate the characteristics of study design, and to collate the commonly CM patterns of UC and frequently used CHM herbs and formulas. Further, IBM SPSS Modeler 18.0 and Cytoscape 3.7.1 software were used to analyze and visualize the associations between different categories of CHM and their zheng indications. Results A total of 2311 articles were included in this study, of which most (> 90%) were RCTs with CHM formulas. The most common zheng of UC was Large intestine dampness-heat , while the basic type of CM patten was Spleen deficiency . The most frequently used classical formula was Bai-Tou-Weng-Tang , followed by Shen-Ling-Bai-Zhu-San , and the commonly used proprietary CHM was Xi-Lei-San (enema). Sulfasalazine and Mesalazine are commonly used as concomitant western medicines. The most frequently used single medicinals were Huang Lian and Bai Zhu , which also identified as the core herbs for different CM patterns. Conclusion This study examined the application of CHM interventions for UC and summarized their characteristics in clinical practice. These data indicated there were limited information about the safety assessment of CHM formulas and further RCTs including CM pattern(s) with strict design are necessary.
Background Leonuri Herba (Yimucao) is a very common Chinese herbs for treating menstrual and maternal diseases for thousands of years in China. However, the herb collected in different origins was easily found in the markets which induce the unstable quality for clinic use. In this study, a comprehensive strategy of using multiple chromatographic analysis and chemometric analysis was firstly investigated for chemical discrimination of Leonuri Herba from different geographical origins. Methods UHPLC-QTOF-MS/MS was applied to identify the peaks of Leonuri Herba and chemical fingerprints were established in 30 batches from different geographical origins. Meanwhile, dissimilarities of chemical compositions among different origins were further investigated by principal component analysis and cluster analysis. And a quantitative UHPLC-QTOF-MS/MS approach were established to investigate the potential marker for quality control of Leonuri Herba. Results A total of 49 chromatographic peaks of Leonuri Herba were identified by UHPLC-QTOF-MS/MS. Leonuri Herba were classified into four categories, and eight major compounds detected could be used as chemical markers for discrimination. Also, the eight components, including leonurine, 4',5-dihydroxy-7-methoxyflavone, rutin, hyperoside, apigenin, quercetin, kaempferol and salicylic acid, were simultaneously quantified using the extracting ion mode of UHPLC-QTOF-MS/MS. Conclusion The current strategy not only clearly expounded the correlation between quality and geographical origins of Leonuri Herba, but also provided a fast, accurate and comprehensive qualitative and quantitative method for assessing the quality of Leonuri Herba.
Background Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that develops resistance to chemotherapy frequently. Autophagy has been reported as a pro-survival response to chemotherapeutic drugs in TNBC, and suppression of autophagy can be a strategy to overcome drug resistance. Methods The efficacy of toosendanin (TSN) in blocking autophagy flux was measured by western blot analysis of autophagy markers, and the fluorescent imaging of RFP-GFP-LC3 probe. The co-localization of autophagosomes and lysosomes was analyzed by fluorescent imaging. Then, lysosome function was determined by measuring the lysosomal pH value and the activity of lysosomal hydrolytic proteases. For in vitro study, human triple-negative breast cancer MDA-MB-231 and MDA-MB-436 cell lines were used for evaluating the anti-proliferative effect. For in vivo study, the RFP-GFP-LC3 MDA-MB-231 xenograft nude mice received intraperitoneal injection of irinotecan (10 mg/kg), TSN (0.5 mg/kg) or a combination, and the autophagy activity and cell apoptosis were determined in tumor tissue. The degree of pathological injury of tissue was evaluated by liver index. Results The natural autophagy inhibitor TSN, a triterpenoid extracted from Melia toosenda Sieb. et Zucc, potently inhibited late-stage autophagy in TNBC cells. This effect was achieved via elevating lysosome pH rather than blocking the fusion of autophagosomes and lysosomes. We further investigated the effects of TSN on the in vitro and in vivo TNBC models, in combination with chemotherapeutic drug irinotecan (or its active metabolite 7-ethyl-10-hydroxycamptothecin), a topoisomerase I inhibitor showing therapeutic potential for TNBC. The data showed that TSN blocked 7-ethyl-10-hydroxycamptothecin (SN-38)/irinotecan-induced protective autophagy, and significantly induced apoptosis in TNBC cells and tumor xenograft models when compared to SN-38/irinotecan alone group. Graphical Abstract
From infrared body temperature surveillance to lifeguarding, real-life visual search is usually continuous and comes with rare targets. Previous research has examined realistic search tasks involving separate slides (such as baggage screening and radiography), but search tasks that require continuous monitoring have generally received less attention. In this study, we investigated whether continuous visual search would display a target-rate effect similar to the low-prevalence effect (LPE) in regular visual search. We designed a continuous detection task for a target feature (e.g., a green color) among items of continuously and gradually changing features (e.g., other colors). In four experiments, we demonstrated target-rate effects in terms of slower hit response times (RTs) and higher miss rates when targets were rare. Similar to regular search, target-rate effects were also observed for relative frequencies across two target features. Taken together, these results suggest a target-rate effect in continuous visual search, and its behavioral characteristics are generally similar to those of the LPE in regular visual search.
Individualized treatment is crucial for epileptic patients with different types of seizures. The differences among patients impact the drug choice as well as the surgery procedure. With the advance in machine learning, automatic seizure detection can ease the manual time-consuming and labor-intensive procedure for diagnose seizure in the clinical setting. In this paper, we present an electroencephalography (EEG) frequency bands (sub-bands) and montages selection (sub-zones) method for classifier training that exploits Natural Language Processing from individual patients’ clinical report. The proposed approach is targeting for individualized treatment. We integrated the prior knowledge from patient’s reports into the classifier-building process, mimicking the authentic thinking process of experienced neurologist’s when diagnosing seizure using EEG. The keywords from clinical documents are mapped to the EEG data in terms of frequency bands and scalp EEG electrodes. The data of experiments are from the Temple University Hospital EEG seizure corpus, and the dataset is divided based on each group of patients with same seizure type and same recording electrode references. The classifier includes Random Forest, Support Vector Machine and Multi-Layer Perceptron. The classification performance indicates that competitive results can be achieve with a small portion of EEG the data. Using the sub-zones selection for Generalized Seizures (GNSZ) on all three electrodes, data are reduced by nearly 50% while the performance metrics remain at the same level with the whole frequency and zones. Moreover, when selecting by sub-zones and sub-bands together for GNSZ with Linked Ears reference, the data range reduced to 0.3% of whole range, and the performance deviates less than 3% from the results with whole range of data. Results show that using proposed approach may lead to more efficient implementations of the seizure classifier to be executed on power-efficient devices for long lasting real-time seizures detection.
Removal of antimonite [Sb(III)] from the aquatic environment and reducing its biotoxicity is urgently needed to safeguard environmental and human health. Herein, crawfish shell-derived biochars (CSB), pyrolyzed at 350, 500, and 650 ° C, were used to remediate Sb(III) in aqueous solutions. The adsorption data best fitted to the pseudo-second-order kinetic and Langmuir isotherm models. Biochar produced at 350 ° C (CSB350) showed the highest adsorption capacity (27.7 mg g − 1 ), and the maximum 78% oxidative conversion of Sb(III) to Sb(V). The adsorption results complemented with infrared (FTIR), X-ray photoelectron (XPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy analyses indicated that the adsorption of Sb(III) on CSB involved electrostatic interaction, surface complexation with oxygen-containing functional groups (C = O, O = C–O), π–π coordination with aromatic C = C and C–H groups, and H-bonding with –OH group. Density functional theory calculations verified that surface complexation was the most dominant adsorption mechanism, whilst π–π coordination and H-bonding played a secondary role. Furthermore, electron spin resonance (ESR) and mediated electrochemical reduction/oxidation (MER/MEO) analyses confirmed that Sb(III) oxidation at the biochar surface was governed by persistent free radicals (PFRs) (•O 2 ⁻ and •OH) and the electron donating/accepting capacity (EDC/EAC) of biochar. The abundance of preferable surface functional groups, high concentration of PFRs, and high EDC conferred CSB350 the property of an optimal adsorbent/oxidant for Sb(III) removal from water. The encouraging results of this study call for future trials to apply suitable biochar for removing Sb(III) from wastewater at pilot scale and optimize the process. Graphical abstract
Background Since the outbreak of COVID-19 has resulted in over 313,000,000 confirmed cases of infection and over 5,500,000 deaths, substantial research work has been conducted to discover agents/ vaccines against COVID-19. Undesired adverse effects were observed in clinical practice and common vaccines do not protect the nasal tissue. An increasing volume of direct evidence based on clinical studies of traditional Chinese medicines (TCM) in the treatment of COVID-19 has been reported. However, the safe anti-inflammatory and anti-fibrotic proprietary Chinese medicines nasal spray, designated as Allergic Rhinitis Nose Drops (ARND), and its potential of re-purposing for suppressing viral infection via SARS-CoV-2 RBD (Delta)- angiotensin converting enzyme 2 (ACE2) binding have not been elucidated. Purpose To characterize ARND as a potential SARS-CoV-2 entry inhibitor for its possible preventive application in anti-virus hygienic agent. Methods Network pharmacology analysis of ARND was adopted to asacertain gene targets which were commonly affected by COVID-19. The inhibitory effect of ARND on viral infection was determined by an in vitro pseudovirus assay. Furthermore, ARND was confirmed to have a strong binding affinity with ACE2 and SARS-CoV-2 spike-RBD (Delta) by ELISA. Finally, inflammatory and fibrotic cell models were used in conjunction in this study. Results The results suggested ARND not only inhibited pseudovirus infection and undermined the binding affinity between ACE2 and the Spike protein (Delta), but also attenuated the inflammatory response upon infection and may lead to a better prognosis with a lower risk of pulmonary fibrosis. The data in this study also provide a basis for further development of ARND as an antiviral hygienic product and further investigations on ARND in the live virus, in vivo and COVID-19 patients. ARND holds promise for use in the current COVID-19 outbreak as well as in future pandemics. Conclusion ARND could be considered as a safe anti-SARS-CoV-2 agent with potential to prevent SARS-CoV-2 coronavirus infection . Graphical abstract
Sympathetic cues via the adrenergic signaling critically regulate bone homeostasis and contribute to neurostress-induced bone loss, but the mechanisms and therapeutics remain incompletely elucidated. Here, we reveal an osteoclastogenesis-centered functionally important osteopenic pathogenesis under sympatho-adrenergic activation with characterized microRNA response and efficient therapeutics. We discovered that osteoclastic miR-21 was tightly regulated by sympatho-adrenergic cues downstream the β2-adrenergic receptor (β2AR) signaling, critically modulated osteoclastogenesis in vivo by inhibiting programmed cell death 4 (Pdcd4), and mediated detrimental effects of both isoproterenol (ISO) and chronic variable stress (CVS) on bone. Intriguingly, without affecting osteoblastic bone formation, bone protection against ISO and CVS was sufficiently achieved by a (D-Asp8)-lipid nanoparticle-mediated targeted inhibition of osteoclastic miR-21 or by clinically relevant drugs to suppress osteoclastogenesis. Collectively, these results unravel a previously underdetermined molecular and functional paradigm that osteoclastogenesis crucially contributes to sympatho-adrenergic regulation of bone and establish multiple targeted therapeutic strategies to counteract osteopenias under stresses.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
6,726 members
Henry Y.T. Ngan
  • Department of Mathematics
Nirakar Pradhan
  • Department of Biology
Kara Chan
  • Department of Communication Studies
Yim Tong Szeto
  • Department of Chemistry
Aiping Lu
  • School of Chinese Medicine
Kowloon, Hong Kong