Friedrich Loeffler Institute
  • Greifswald, Mecklenburg-Vorpommern, Germany
Recent publications
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is the world's leading cause of mortality from a single bacterial pathogen. With increasing frequency, emergence of drug-resistant mycobacteria leads to failures of standard TB treatment regimens. Therefore, new anti-TB drugs are urgently required. BTZ-043 belongs to a novel class of nitrobenzothiazinones, which inhibit mycobacterial cell wall formation by covalent binding of an essential cysteine in the catalytic pocket of decaprenylphosphoryl-β-d-ribose oxidase (DprE1). Thus, the compound blocks the formation of decaprenylphosphoryl-β-d-arabinose, a precursor for the synthesis of arabinans. An excellent in vitro efficacy against M. tuberculosis has been demonstrated. Guinea pigs are an important small-animal model to study anti-TB drugs, as they are naturally susceptible to M. tuberculosis and develop human-like granulomas after infection. In the current study, dose-finding experiments were conducted to establish the appropriate oral dose of BTZ-043 for the guinea pig. Subsequently, it could be shown that the active compound was present at high concentrations in Mycobacterium bovis BCG-induced granulomas. To evaluate its therapeutic effect, guinea pigs were subcutaneously infected with virulent M. tuberculosis and treated with BTZ-043 for 4 weeks. BTZ-043-treated guinea pigs had reduced and less necrotic granulomas than vehicle-treated controls. In comparison to the vehicle controls a highly significant reduction of the bacterial burden was observed after BTZ-043 treatment at the site of infection and in the draining lymph node and spleen. Together, these findings indicate that BTZ-043 holds great promise as a new antimycobacterial drug.
Small mammals are an important reservoir for causative agents of numerous infectious diseases, including zoonotic and vector-borne diseases. The occurrence of these pathogens represents a regional but permanent threat for humans and animals in general and might especially weaken military personnel and companion animals in abroad missions. In our study, small mammals collected in military camps in Afghanistan (Feyzabad, Mazar-e Sharif, and Kunduz) were investigated for the presence of apicomplexans using histopathology and molecular methods. For this purpose, well-established and newly developed real-time PCR assays were applied. A high prevalence was detected not only in house mice (Mus musculus), but also in shrews (Crocidura cf. suaveolens) and grey dwarf hamsters (Cricetulus migratorius). The molecular characterization based on the 18S rRNA gene revealed a close relationship to a cluster of Hepatozoon sp. detected in voles of the genus Microtus. Hepatozoon canis DNA was detected in one house mouse as well as in two Rhipicephalus ticks from a dog puppy. In addition, around 5% of the house mice were found to be infected with far related adeleorinids showing the highest sequence identity of 91.5% to Klossiella equi, the only published Klossiella sequence at present. For their better phylogenetic characterization, we conducted metagenomics by sequencing of two selected samples. The resulting 18S rRNA gene sequences have a length of about 2400 base pairs including an insertion of about 500 base pairs and are 100% identical to each other. Histopathology together with organ tropism and detection rates verified this sequence as of Klossiella muris. In conclusion, we documented naturally occurring protozoan stages and the additional taxonomic characterization of a well-known commensal in mice by applying a combination of different approaches. The study is of medical, social, and biological importance for ensuring human and animal health in military camps and also stresses the required awareness for the potential risk of zoonoses.
Community-acquired pneumonia remains a major contributor to global communicable disease-mediated mortality. Neutrophils play a leading role in trying to contain bacterial lung infection, but they also drive detrimental pulmonary inflammation, when dysregulated. Here we aimed at understanding the role of microRNA-223 in orchestrating pulmonary inflammation during pneumococcal pneumonia. Serum microRNA-223 was measured in patients with pneumococcal pneumonia and in healthy subjects. Pulmonary inflammation in wild-type and microRNA-223-knockout mice was assessed in terms of disease course, histopathology, cellular recruitment and evaluation of inflammatory protein and gene signatures following pneumococcal infection. Low levels of serum microRNA-223 correlated with increased disease severity in pneumococcal pneumonia patients. Prolonged neutrophilic influx into the lungs and alveolar spaces was detected in pneumococci-infected microRNA-223-knockout mice, possibly accounting for aggravated histopathology and acute lung injury. Expression of microRNA-223 in wild-type mice was induced by pneumococcal infection in a time-dependent manner in whole lungs and lung neutrophils. Single-cell transcriptome analyses of murine lungs revealed a unique profile of antimicrobial and cellular maturation genes that are dysregulated in neutrophils lacking microRNA-223. Taken together, low levels of microRNA-223 in human pneumonia patient serum were associated with increased disease severity, whilst its absence provoked dysregulation of the neutrophil transcriptome in murine pneumococcal pneumonia.
Nairobi sheep disease virus (NSDV) belongs to the Orthonairovirus genus in the Bunyavirales order and is genetically related to human-pathogenic Crimean-Congo hemorrhagic fever virus (CCHFV). NSDV is a zoonotic pathogen transmitted by ticks and primarily affects naïve small ruminants in which infection leads to severe and often fatal hemorrhagic gastroenteritis. Despite its veterinary importance and the striking similarities in the clinical picture between NSDV-infected ruminants and CCHFV patients, the molecular pathogenesis of NSDV and its interactions with the host cell are largely unknown. Here, we identify the membrane-bound proprotein convertase site-1 protease (S1P), also known as subtilisin/kexin-isozyme-1 (SKI-1), as a host factor affecting NSDV infectivity. Absence of S1P in SRD-12B cells, a clonal CHO-K1 cell variant with a genetic defect in the S1P gene (MBTPS1), results in significantly decreased NSDV infectivity while transient complementation of SKI-1/S1P rescues NSDV infection. SKI-1/S1P is dispensable for virus uptake but critically required for production of infectious virus progeny. Moreover, we provide evidence that SKI-1/S1P is involved in the posttranslational processing of the NSDV glycoprotein precursor. Our results demonstrate the role of SKI-1/S1P in the virus life cycle of NSDV and suggest that this protease is a common host factor for orthonairoviruses and may thus represent a promising broadly-effective, indirect antiviral target.
West Nile virus (WNV) is known to cause disease and death in humans and various animals worldwide. WNV has circulated in Germany since 2018. In 2020, four birds tested positive for the WNV genome at Zoopark Erfurt (Thuringia). Moreover, virus neutralization assays detected neutralizing antibodies (nAb) against WNV in 28 birds. In addition, nAb against WNV and Usutu virus (USUV) were found in 14 birds. To protect valuable animals and to reduce the risk of viral transmission from birds to humans, we performed a field study on WNV vaccination at the zoo. To conduct the study, 61 birds from the zoo were categorized into three groups and subjected to a vaccination regimen, where each bird received either 1.0 mL, 0.5 mL, or 0.3 mL of a commercial inactivated WNV vaccine three times. The vaccinations were administered at three-week intervals, or as per modified vaccination schedules. Furthermore, 52 birds served as non-vaccinated controls. Adverse vaccination reactions were absent. The greatest increase in nAb titres was observed in birds that received 1.0 mL of vaccine. However, pre-existing antibodies to WNV and USUV appeared to have a major effect on antibody development in all groups and in all bird species, whereas sex and age had no effect. After vaccination, no death was detected in vaccinated birds for more than 1 year.
A more effective vaccine against tuberculosis than Bacille Calmette-Guérin (BCG) is urgently needed. BCG derived recombinant VPM1002 has been found to be more efficacious and safer than the parental strain in mice models. Newer candidates, such as VPM1002 Δpdx1 (PDX) and VPM1002 ΔnuoG (NUOG), were generated to further improve the safety profile or efficacy of the vaccine. Herein, we assessed the safety and immunogenicity of VPM1002 and its derivatives, PDX and NUOG, in juvenile goats. Vaccination did not affect the goats’ health in regards to clinical/hematological features. However, all three tested vaccine candidates and BCG induced granulomas at the site of injection, with some of the nodules developing ulcerations approximately one month post-vaccination. Viable vaccine strains were cultured from the injection site wounds in a few NUOG- and PDX- vaccinated animals. At necropsy (127 days post-vaccination), BCG, VPM1002, and NUOG, but not PDX, still persisted at the injection granulomas. All strains, apart from NUOG, induced granuloma formation only in the lymph nodes draining the injection site. In one animal, the administered BCG strain was recovered from the mediastinal lymph nodes. Interferon gamma (IFN-γ) release assay showed that VPM1002 and NUOG induced a strong antigen-specific response comparable to that elicited by BCG, while the response to PDX was delayed. Flow cytometry analysis of IFN-γ production by CD4+, CD8+, and γδ T cells showed that CD4+ T cells of VPM1002- and NUOG-vaccinated goats produced more IFN-γ compared to BCG-vaccinated and mock-treated animals. In summary, the subcutaneous application of VPM1002 and NUOG induced anti-tuberculous immunity, while exhibiting a comparable safety profile to BCG in goats.
African swine fever (ASF) is a severe, globally important disease in domestic and wild pigs. The testing of alternative transmission routes has proven that the ASF virus (ASFV) can be efficiently transmitted to sows via semen from infected boars through artificial insemination. Boars intramuscularly inoculated with the ASFV strain “Estonia 2014” showed grossly and microscopically visible changes in the testis, epididymis, prostate, and vesicular gland. The gross lesions included hemorrhages on the scrotum, testicular membranes, and parenchyma; edema; hydroceles; and proliferations of the tunica vaginalis. Histopathologically, vasculitis and perivasculitis was detected in the testis and epididymis. Subacutely infected animals further revealed a degeneration of the testicular and epididymal tubules, pointing to the destruction of the blood–testis and blood–epididymis barriers upon disease progression. This was confirmed by evidence of semen round cells and sperm abnormalities at later time points after the infection. The histopathology was associated with the presence of viral DNA and the infectious virus, and in a limited amount with viral antigens. In most scenarios, the impact of these changes on the reproductive performance and long-term persistence of the virus is probably negligible due to the culling of the animals. However, under backyard conditions and in wild boar populations, infected males will remain in the population and the long-term fate should be further evaluated.
Echinococcus multilocularis (Em), the causative agent of human alveolar echinococcosis (AE), is present in the Holarctic region, and several genetic variants deem to have differential infectivity and pathogenicity. An unprecedented outbreak of human AE cases in Western Canada infected with a European-like strain circulating in wild hosts warranted assessment of whether this strain was derived from a recent invasion or was endemic but undetected. Using nuclear and mitochondrial markers, we investigated the genetic diversity of Em in wild coyotes and red foxes from Western Canada, compared the genetic variants identified to global isolates and assessed their spatial distribution to infer possible invasion dynamics. Genetic variants from Western Canada were closely related to the original European clade, with lesser genetic diversity than that expected for a long-established strain and spatial genetic discontinuities within the study area, supporting the hypothesis of a relatively recent invasion with various founder events.
Genome editing has enhanced our ability to understand the role of genetics in a number of diseases by facilitating the development of more precise cellular and animal models to study pathophysiological processes. These advances have shown extraordinary promise in a multitude of areas, from basic research to applied bioengineering and biomedical research. Induced pluripotent stem cells (iPSCs) are known for their high replicative capacity and are excellent targets for genetic manipulation as they can be clonally expanded from a single cell without compromising their pluripotency. Clustered, regularly interspaced short palindromic repeats (CRISPR) and CRISPR/Cas RNA-guided nucleases have rapidly become the method of choice for gene editing due to their high specificity, simplicity, low cost, and versatility. Coupling the cellular versatility of iPSCs differentiation with CRISPR/Cas9-mediated genome editing technology can be an effective experimental technique for providing new insights into the therapeutic use of this technology. However, before using these techniques for gene therapy, their therapeutic safety and efficacy following models need to be assessed. In this review, we cover the remarkable progress that has been made in the use of genome editing tools in iPSCs, their applications in disease research and gene therapy as well as the hurdles that remain in the actual implementation of CRISPR/Cas systems.
Zoonotic diseases are a heterogenous group of infections transmittable between humans and vertebrate animal species. Globally, endemic and emerging zoonoses are responsible for high social and economic costs. Due to the particular positioning of zoonoses at the human-animal-environment interface, zoonotic disease control is an integral part of One Health, which recognizes the close link between human, animal and ecosystem health. During recent years, the validity of the One Health approach has been recognized by academia and policy makers. However, gaps are still evident, particularly in the implementation of the concept as a unifying, integrated approach for different sectors and disciplines for the control of zoonoses. For example, while cooperation between human and veterinary medicine has made significant progress, networking with environmental sciences leaves room for improvement. Examination of individual intervention measures can help to gain valuable insights for future projects, and help to identify existing gaps. This is also a task for the One Health High-Level Expert Panel, which was established by WHO, OIE, FAO and UNEP to give science-based strategic advice on One Health measures. Overall, we should aim to learn from current situations, and to identify the best practice examples available, to continuously develop and improve One Health concepts for the control of zoonoses.
Borna disease virus 1 (BoDV-1) has been recognized as a rare cause of very severe encephalitis with rapid onset in central Europe. Data on cerebrospinal fluid (CSF) analysis have not yet been analyzed in detail. Here, we present the first study on CSF changes in BoDV-1 encephalitis. We retrospectively analyzed CSFs from 18 BoDV-1 encephalitis cases from Bavaria, Germany, an endemic region, from 1996 to 2021. Data were obtained through review of medical records and institutional databases. We found that white blood cell count (WBC) in CSF is elevated in 13 of our 18 patients at first examination (average 83.2 ± 142.3 leukocytes/μl) and cytology showed predominance of lymphocytes. Patients with typical symptoms of meningoencephalitis had higher WBC in first CSF analyzation (133.5 ± 163.1 vs 4.0 ± 3.2/μl; p = 0.065). BoDV-1 PCR of CSF is not always positive when tested (7 of 9 cases). Four of five patients tested showed a polyvalent reaction against multiple viruses in the CSF suggesting that BoDV1 may trigger autoimmune mechanisms. CSF changes in BoDV-1 encephalitis seem similar to those of other viral encephalitis and at the beginning WBC can be normal in up to 28%, making the diagnosis even more challenging. All in all, BoDV-1 should be included in the diagnostic workup of patients with rapidly evolving and/or severe encephalitis and patients with severe neuropathy and secondary encephalopathy with and without CSF changes. Repeated CSF examinations as well as BoDV-1 serology and CSF PCR have to be considered in endemic areas.
Swine influenza A virus (swIAV) plays an important role in porcine respiratory infections. In addition to its ability to cause severe disease by itself, it is important in the multietiological porcine respiratory disease complex. Still, to date, no comprehensive diagnostics with which to study polymicrobial infections in detail have been offered. Hence, veterinary practitioners rely on monospecific and costly diagnostics, such as Reverse Transcription quantitative PCR (RT-qPCR), antigen detection, and serol-ogy. This prevents the proper understanding of the entire disease context, thereby hampering effective preventive and therapeutic actions. A new, nanopore-based, meta-genomic diagnostic platform was applied to study viral and bacterial profiles across 4 age groups on 25 endemic swIAV-infected German farms with respiratory distress in the nursery. Farms were screened for swIAV using RT-qPCR on nasal and tracheobronchial swabs (TBS). TBS samples were pooled per age, prior to metagenomic characterization. The resulting data showed a correlation between the swIAV loads and the normalized reads, supporting a (semi-)quantitative interpretation of the metagenomic data. Interestingly, an in-depth characterization using beta diversity and PERMANOVA analyses allowed for the observation of an age-dependent interplay of known microbial agents. Also, lesser-known microbes, such as porcine polyoma, parainfluenza, and hemagglutinating encephalomy-elitis viruses, were observed. Analyses of swIAV incidence and clinical signs showed differing microbial communities, highlighting age-specific observations of various microbes in porcine respiratory disease. In conclusion, nanopore metagenomics were shown to enable a panoramic view on viral and bacterial profiles as well as putative pathogen dynamics in endemic swIAV-infected herds. The results also highlighted the need for better insights into lesser studied agents that are potentially associated with porcine respiratory disease. IMPORTANCE To date, no comprehensive diagnostics for the study of polymicrobial infections that are associated with porcine respiratory disease have been offered. This precludes the proper understanding of the entire disease landscape, thereby hampering effective preventive and therapeutic actions. Compared to the often-costly diagnostic procedures that are applied for the diagnostics of porcine respiratory disease nowadays, a third-generation nanopore sequencing diagnostics workflow presents a cost-efficient and informative tool. This approach offers a panoramic view of microbial agents and contributes to the in-depth observation and characterization of viral and bacterial profiles within the respiratory disease context. While these data allow for the study of age-associated, swIAV-associated, and clinical symptom-associated observations, it also suggests that more effort should be put toward the investigation of coinfections and Editor Artem S. Rogovskyy, Texas A&M University Month YYYY Volume XX Issue XX 10.1128/spectrum.00098-23 1 RESEARCH ARTICLE Downloaded from on 28 February 2023 by
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in China by the end of 2019 and was responsible for a pandemic in the human population that resulted in millions of deaths worldwide. Since the beginning of the pandemic, the role of animals as spill-over or reservoir hosts was discussed. In addition to cats and dogs, ferrets are becoming increasingly popular as companion animals. Under experimental conditions, ferrets are susceptible to SARS-CoV-2 and it appears that they can also be infected through contact with a SARS-CoV-2 positive owner. However, there is still little information available regarding these natural infections. Here, we serologically tested samples collected from pet ferrets (n = 45) from Poland between June and September 2021. Of the ferrets that were included in the study, 29% (13/45) had contact with owners with confirmed SARS-CoV-2 infections. Nevertheless, SARS-CoV-2-specific antibodies could not be detected in any of the animals, independent of the infection status of the owner. The obtained results suggest that ferrets cannot be readily infected with SARS-CoV-2 under natural conditions, even after prolonged contact with infected humans. However, due to the rapid mutation rate of this virus, it is important to include ferrets in future monitoring studies.
In Europe, most cases of human hantavirus disease are caused by Puumala orthohantavirus (PUUV) transmitted by bank voles (Clethrionomys glareolus, syn. Myodes glareolus), in which PUUV causes inconspicuous infection. Little is known about tropism and endoparasite coinfections in PUUV-infected reservoir and spillover-infected rodents. Here, we characterized PUUV tropism, pathological changes and endoparasite coinfections. The voles and some non-reservoir rodents were examined histologically, immunohistochemically, by in situ hybridization, indirect IgG enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction. PUUV RNA and anti-PUUV antibodies were detected simultaneously in a large proportion of the bank voles, indicating persistent infection. Although PUUV RNA was not detected in non-reservoir rodents, the detection of PUUV-reactive antibodies suggests virus contact. No specific gross and histological findings were detected in the infected bank voles. A broad organ tropism of PUUV was observed: kidney and stomach were most frequently infected. Remarkably, PUUV was detected in cells lacking the typical secretory capacity, which may contribute to the maintenance of virus persistence. PUUV-infected wild bank voles were found to be frequently coinfected with Hepatozoon spp. and Sarcocystis (Frenkelia) spp., possibly causing immune modulation that may influence susceptibility to PUUV infection or vice versa. The results are a prerequisite for a deeper understanding of virus–host interactions in natural hantavirus reservoirs.
La Crosse virus, responsible for pediatric encephalitis in the United States, and Schmallenberg virus, a highly teratogenic veterinary virus in Europe, belong to the large Orthobunyavirus genus of zoonotic arthropod-borne pathogens distributed worldwide. Viruses in this under-studied genus cause CNS infections or fever with debilitating arthralgia/myalgia syndromes, with no effective treatment. The main surface antigen, glycoprotein Gc (∼1,000 residues), has a variable N-terminal half (GcS) targeted by the patients' antibody response and a conserved C-terminal moiety (GcF) responsible for membrane fusion during cell entry. Here, we report the X-ray structure of post-fusion La Crosse and Schmallenberg virus GcF, revealing the molecular determinants for hairpin formation and trimerization required to drive membrane fusion. We further experimentally confirm the role of residues in the fusion loops and in a vestigial endoplasmic reticulum (ER) translocation sequence at the GcS-GcF junction. The resulting knowledge provides essential molecular underpinnings for future development of potential therapeutic treatments and vaccines.
African swine fever (ASF) in domestic pigs has, since its discovery in Africa more than a century ago, been associated with subsistence pig keeping with low levels of biosecurity. Likewise, smallholder and backyard pig farming in resource-limited settings have been notably affected during the ongoing epidemic in Eastern Europe, Asia, the Pacific, and Caribbean regions. Many challenges to managing ASF in such settings have been identified in the ongoing as well as previous epidemics. Consistent implementation of biosecurity at all nodes in the value chain remains most important for controlling and preventing ASF. Recent research from Asia, Africa, and Europe has provided science-based information that can be of value in overcoming some of the hurdles faced for implementing biosecurity in resource-limited contexts. In this narrative review we examine a selection of these studies elucidating innovative solutions such as shorter boiling times for inactivating ASF virus in swill, participatory planning of interventions for risk mitigation for ASF, better understanding of smallholder pig-keeper perceptions and constraints, modified culling, and safe alternatives for disposal of carcasses of pigs that have died of ASF. The aim of the review is to increase acceptance and implementation of science-based approaches that increase the feasibility of managing, and the possibility to prevent, ASF in resource-limited settings. This could contribute to protecting hundreds of thousands of livelihoods that depend upon pigs and enable small-scale pig production to reach its full potential for poverty alleviation and food security.
Anaplasma phagocytophilum is an obligate intracellular bacterium that causes granulocytic anaplasmosis in domestic animals, wildlife, and humans and is primarily transmitted by ticks of the Ixodes persulcatus complex. This retrospective study aims to determine the percentages of dogs that tested positive for A. phagocytophilum in Germany. It included the results of direct (polymerase chain reaction [PCR]) and indirect (immunofluorescence antibody test [IFAT], antibody-enzyme-linked immunosorbent assay [ELISA]) detection methods performed in the laboratory LABOKLIN on canine samples provided by German veterinarians from 2008 to 2020. Out of a total of 27,368 dogs tested by PCR, 1332 (4.9%) tested positive, while 24,720 (27.4%) of the 90,376 dogs tested by IFAT/ELISA had positive serology. High rates of positive PCR results were observed in months with known peaks in vector activity, showing that the dynamics of A. phagocytophilum infections in dogs in Germany are consistent with vector activity. In dogs with a positive PCR result, peaks in serology could be observed four weeks after initial testing. Male and senior dogs had higher rates of positive serology. A possible impact of environmental factors such as changes in climate should be investigated further. Overall, the upward trend in positive test results over the years indicates that canine granulocytic anaplasmosis will continue to become increasingly important for veterinary medicine.
Shuni virus (SHUV), an orthobunyavirus of the Simbu serogroup, was initially isolated in Nigeria in the 1960s, further detected in other African countries and in the Middle East, and is now endemic in Israel. Transmitted by blood-sucking insects, SHUV infection is associated with neurological disease in cattle and horses, and with abortion, stillbirth, or the birth of malformed offspring in ruminants. Surveillance studies also indicated a zoonotic potential. This study aimed to test the susceptibility of the well-characterized interferon (IFN)-α/β receptor knock-out mouse model ( Ifnar −/− ), to identify target cells, and to describe the neuropathological features. Ifnar −/− mice were subcutaneously infected with two different SHUV strains, including a strain isolated from the brain of a heifer showing neurological signs. The second strain represented a natural deletion mutant exhibiting a loss of function of the S-segment–encoded nonstructural protein NSs, which counteracts the host’s IFN response. Here it is shown that Ifnar −/− mice are susceptible to both SHUV strains and can develop fatal disease. Histological examination confirmed meningoencephalomyelitis in mice as described in cattle with natural and experimental infections. RNA in situ hybridization was applied using RNA Scope™ for SHUV detection. Target cells identified included neurons and astrocytes, as well as macrophages in the spleen and gut-associated lymphoid tissue. Thus, this mouse model is particularly beneficial for the evaluation of virulence determinants in the pathogenesis of SHUV infection in animals.
On-target integration of large cassettes via homology-directed repair (HDR) has several applications. However, the HDR-mediated targeted knock-in suffered from low efficiency. In this study, we made several large plasmids (12.1–13.4 kb) which included the CRISPR/Cas9 system along with a puromycin transgene as part of the large DNA donor (5.3–7.1 kb insertion cassettes) and used them to evaluate their targeted integration efficiency into a transgenic murine embryonic fibroblast (MEF) cell line carrying a single copy of a Venus transgene. We established a detection assay by which HDR events could be discriminated from the error-prone non-homologous end-joining (NHEJ) events. Improving the plasmid quality could considerably leverage the cell toxicity impediment of large plasmids. The use of the TILD (targeted integration with linearized dsDNA) cassettes did not improve the HDR rate compared to the circular plasmids. However, the direct inclusion of nocodazole into the electroporation solution significantly improved the HDR rate. Also, simultaneous delivery of RNase HII and the donor plasmids into the electroporated cells considerably improved the HDR events. In conclusion, the results of this study showed that using cell synchronization reagents in the electroporation medium can efficiently induce HDR rate in the mammalian genome.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
307 members
Pavlo Maksimov
  • Institute of Epidemiology
Ariel Vina-Rodriguez
  • Institute for Novel and Emerging Infectious Diseases
Südufer 10, 17493, Greifswald, Mecklenburg-Vorpommern, Germany
Head of institution
Prof. Dr. Dr. Thomas C. Mettenleiter