Recent publications
Herein, we have applied the vibrational up-pumping model to predict the mechanically-induced impact sensitivities of a set of 33 molecular energetic crystals. Overall, the model can successfully identify and rank...
To obtain a deeper insight into the nature of energy dissipation during fracture, the internal friction of 13 borosilicate, aluminosilicate, soda-lime, and lead-containing glasses, for which inert crack growth data are known, was measured using dynamic mechanical thermal analysis. For asymmetrically bent glass beams, the loss tangent, tan δ, was determined between 0.2 and 50 Hz at temperatures between 273 K and the glass transition temperature, Tg. It was found that the area under the tan δ vs T·Tg⁻¹ curve correlates with the crack growth exponent, n, in the empirical v = v0·KIⁿ relation between crack growth velocity, v, and stress intensity, KI, which indicates that n correlates with the degree of energy dissipation of sub-Tg relaxation phenomena.
Corrosion of metals and other materials in marine environments poses significant economic, operational, safety, and environmental challenges across the oil and gas industry, the renewable energy sector, and maritime infrastructure....
Temperature is a key characteristic in laser powder bed fusion of metals (PBF-LB/M). As a quantitative physical property, the temperature can determine the actual process quality independently from the nominal process parameters. Thus, establishing a process evaluation on temperatures rather than the comparison of process conditions is expected to be more effective. However, quantitative in situ temperature measurements with classical thermographic methods are virtually impossible. The reason is that the required emissivity value changes drastically throughout the process. Additionally, large temperature ranges along with the highly dynamic nature of the PBF-LB/M process make temperature measurements difficult. Based on this challenge, this work presents a method for hyperspectral temperature determination. The spectral exitance (in W/m²⋅nm) was measured in situ at many adjacent wavelengths in the short-wave infrared (SWIR). This enabled a local temperature determination via Planck’s law in combination with a spectral emissivity function. The temperature field of the melt pool crossing the 1D measurement line was reconstructed from the information, gathered at nearly 20 kHz sampling rate. The reconstructed melt pool had a spatial resolution of 17 µm by 40 µm, and temperatures between 2700 and 1300 K were observable. Comparison of the 316L stainless steel solidification temperature and the observed solidification plateau in the gathered thermal data revealed a relative error of less than 6% in the absolute temperature measurement. These initial results of hyperspectral temperature determination in PBF-LB/M show the potential in the method. It allows for physically founded process evaluation, and the prospects for tuning and validation of numerical simulations are highly promising.
The development of nanoporous metals and metallic composites through dealloying processes presents significant opportunities in materials engineering. However, designing multicomponent precursor alloys and establishing corresponding processing methods that yield predictable compositions and nanostructures remain a complex challenge. This article explores how machine learning (ML)-augmented computational and experimental methodologies can tackle these challenges by predicting precursor alloy compositions, final nanoporous structures, and mechanical properties, while integrating ML-enabled autonomous experimentation for material design and quantification. We highlight recent advancements in applying ML to nanostructured materials design via dealloying and discuss how techniques from other nanomaterial designs can be adapted for improved control over morphological and compositional outcomes in nanoporous and nanocomposite materials. Furthermore, we explore the role of ML in autonomous synchrotron x-ray experimentation, enabling real-time feedback between modeling and experimental setups. ML-driven approaches to microstructure characterization and mechanical property prediction are also examined, with a focus on modeling and advanced imaging techniques such as three-dimensional nanotomography. Finally, this article outlines future directions for ML-enhanced materials science, emphasizing the exploration of high-dimensional parameter spaces and the incorporation of materials kinetics into processing and property evaluation, ultimately advancing the design of nanoporous structures and materials science.
This study explores F incorporation in enamel via PIGE, NEXAFS, and Raman spectroscopy, integrating experimental/simulated spectra. Machine Learning boosts data interpretation, offering key insights into F delivery for clinical application.
Natural language processing with the help of large language models such as ChatGPT has become ubiquitous in many software applications and allows users to interact even with complex hardware or software in an intuitive way. The recent concepts of Self-Driving Labs and Material Acceleration Platforms stand to benefit greatly from making them more accessible to a broader scientific community through enhanced user-friendliness or even completely automated ways of generating experimental workflows that can be run on the complex hardware of the platform from user input or previously published procedures. Here, two new datasets with over 1.5 million experimental procedures and their (semi)automatic annotations as action graphs, i.e., structured output, were created and used for training two different transformer-based large language models. These models strike a balance between performance, generality, and fitness for purpose and can be hosted and run on standard consumer-grade hardware. Furthermore, the generation of node graphs from these action graphs as a user-friendly and intuitive way of visualizing and modifying synthesis workflows that can be run on the hardware of a Self-Driving Lab or Material Acceleration Platform is explored. Lastly, it is discussed how knowledge graphs – following an ontology imposed by the underlying node setup and software architecture – can be generated from the node graphs. All resources, including the datasets, the fully trained large language models, the node editor, and scripts for querying and visualizing the knowledge graphs are made publicly available.
In nature, organic molecules play a vital role in light harvesting and photosynthesis. However, regarding artificial water splitting, the research focus is primarily on inorganic semiconductors. Although organic photocatalysts have high structural variability, they tend to exhibit lower quantum efficiencies for water splitting than their inorganic counterparts. Multicomponent reactions (MCRs) offer an attractive route to introduce different functional units into covalent organic frameworks (COFs) and enable semiconducting properties and high chemical stability, creating promising materials for long‐term photocatalytic applications, such as H2 production. Herein, five highly crystalline donor‐acceptor based, 4‐substituted quinoline‐linked MCR‐COFs are presented that are prepared via the three‐component Povarov reaction. The pore functionality is varied by applying different vinyl derivatives (e.g., styrene, 2‐vinyl pyridine, 4‐vinylpyridine, 4‐vinyl imidazole, 2,3,4,5,6‐pentafluorostyrene), which has a strong influence on the obtained photocatalytic activity. Especially an imidazole‐functionalized COF displays promising photocatalytic performance due to its high surface area, crystallinity, and wettability. These properties enable it to maintain its photocatalytic activity even in a membrane support. Furthermore, such MCR‐COFs display dramatically enhanced (photo)chemical stability even after long‐term solar light irradiation and exhibit a high and steady H2 evolution for at least 15 days.
Detection and monitoring of faecal contaminants in water is an important component of water quality testing protocol worldwide. However, a systematic overview of the faecal indicator paradigm, including its fundamentals and challenges in analytical applications, is missing. In particular, with respect to the advantages of using faecal indication pigments (FIP) over faecal indication bacteria (FIB). This discussion is based on two FIPs, Urobilin (UB) and Stercobilin (SB), which can enable rapid and real‐time indication of faecal contaminants in ground/surface water. Novel strategies for enhancing sensitive fluorescence‐based techniques for trace concentration detection have been discussed in detail, with specific reference to understanding their physicochemical properties, photophysics, metal‐ligand complexation, molecular aggregations, thermodynamics, fluorescence response and matrix interferences in aqueous media or environmental samples. The insights provided in this perspective article could inspire procedures by avoiding ambiguities and misinterpretations.
Metal–organic frameworks (MOFs) have recently been proposed as a plausible solution to the pressing issue of water scarcity and as a means of remediating contaminated water bodies. In light-assisted water treatment, they have so far only been exploited via the hydroxyl radical route, through Fenton-like processes. A new avenue is introduced here by the biomimetic conceptual design of MOF bearing hypervalent metal atoms for photocatalytic water treatment. We report a zeolitic imidazole framework (ZIF) material doped with iron (Fe-ZIF-7-III; UPO-4) synthesized via a novel mild treatment to stabilize photoactive hypervalent ferryl ions for the first time in a MOF for water treatment. The successful synthesis of the 2D material and the adequate incorporation of iron into the structure were demonstrated using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). A simulation study analyzed the structure and stability of the Fe-ZIF-7-III material as well as the involvement of ferryl ions in the photo-Fenton-type process. Furthermore, the calculated band gap of this material shows its viability for use in photocatalysis using sunlight. This was confirmed by evaluating the photodegradation of caffeine, a model pollutant in water, without the assistance of hydroxyl radicals as indicated by a scavenger test. The recyclability test revealed that Fe-ZIF-7-III could be used continuously with effective catalytic activity, thus opening the door to the field of studying hypervalent metal MOFs not yet explored in water treatment.
Viscosity modifying agents (VMA) and superplasticizers (SP) are two common macromolecular admixture types for cementitious materials. VMAs are used to stabilize fresh cementitious materials, while SPs are used to disperse them. Most VMAs are bio‐based polysaccharides that act in the water phase between particles; while most SPs are synthetic comb polymers, consisting of negatively charged backbones that help their adsorption to the cement particles' surface. The molecular structure of DNA contains elements of VMA – as it is a polysaccharide – and SP – as it is a polyanion. In this study, rheological measurements are used to compare how these three types of macromolecules (VMA, SP, and DNA) affect cementitious materials. It is found that DNA shows the combined effects of VMAs and SPs on cement paste: it lowers yield stress while at the same time maintaining or even increasing its viscosity, which permits reducing water content while avoiding bleeding or segregation of samples. Yet, the presence of DNA has a significant retardation impact on cement hydration, which is also a common side effect of VMAs and SPs.
The kinetics of anionic polymerization of β‐myrcene initiated by sec‐butyllithium were examined in saturated and unsaturated hydrocarbon solvents, i.e. cyclohexane, cyclohexene, 4‐vinylcyclohexene and dl‐limonene. Polymerizations usually proceeded in a living manner, i.e. in the absence of termination and chain transfer reactions, in all solvents, to produce well‐defined polymyrcenes with high content (>85%) of cis‐1,4 units. However, polymyrcenyllithium chains exhibited limited long‐term stability in 4‐vinylcyclohexene solution, most probably due to chain transfer to solvent. Reaction orders with respect to the concentration of active chains were found to be one‐quarter in cyclohexane increasing to one‐half in unsaturated solvents, indicating that the polymyrcenyllithium chains are present as tetrameric or dimeric associates, respectively. Apparent activation energies were found to be 81 kJ mol⁻¹ in cyclohexane and 77 kJ mol⁻¹ in dl‐limonene solution, which are close to the values obtained by quantum chemical calculations. © 2025 The Author(s). Polymer International published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
In this paper, we demonstrate the value of 1 H NMR relaxometry for studying the hydration of clinker-reduced, climate-friendly cementitious binders. Our study includes white cement (WC), ordinary Portland cement (OPC), and samples incorporating reactive agro-waste based ashes and non-reactive biochars as supplementary cementitous materials (SCM). NMR measurements were performed over a period of up to 120 h during hydration with an echo time of 50 \upmu μ s and a relatively large sample size of 20 mL. The results were compared to heat flow calorimetry (HFC) data, and a detailed comparison with literature data was performed for pure OPC and WC. The results show that time-resolved NMR measurements, especially the analysis of individual NMR signal components assigned to defined 1 H reservoirs, are effective for studying hydration processes. They offer insights into the evolution of the microstrucure and specific chemical phases. NMR provides valuable information and serves as a good complement to HFC. The comparison with data obtained with shorter echo times (40 \upmu μ s or around 15–45 \upmu μ s with solid echo sequence) on much smaller samples showed almost identical developments with respect to the T 2 distributions. For the SCM samples, NMR results indicated partially accelerated hydration processes compared to classical OPC hydration. One SCM sample acted as a highly reactive pozzolan, showing a similar hydration process to OPC with the strongest effect observed when superplasticizer was added. Adding biochar delayed C-S-H gel pore formation but significantly increased capillary pores and even free water, likely due to the sponge-like structure.
Single crystalline metals exhibit correlated dislocation dynamics, irrespective of lattice system. This collective evolution of dislocation structures is intermittent and scale-free, implying divergent length scales that play a critical role in failure initiation and therefore microstructural design. Here we report on a HfNbTaTiZr refractory high-entropy alloy, that lacks criticality in the collective dislocation response. This unusual behaviour manifests itself in almost quenched-out microplastic stress-strain fluctuations and sluggish dislocation avalanching, otherwise only seen in complex engineering alloys. These findings demonstrate how the high-entropy paradigm can serve as a role model to effectively suppress unwanted plastic fluctuations in metals deformation.
While 2D polymers with aromatic backbones have been increasingly receiving interest from various scientific disciplines, their nonaromatic counterparts are less investigated. In this work, 2D poly(β‐cyclodextrin)s (2D‐CDs) with few hundred nanometers to millimeters lateral sizes and 0.7 nm thickness are synthesized using graphene and boron nitride as colloidal templates and used for multivalent host‐guest interactions with biological systems. Deposition of cyclodextrins on graphene and boron nitride templates followed by lateral crosslinking and template detachment resulted in 2D‐CDs with different physicochemical properties. The size of the 2D‐CDs is dominated by noncovalent interactions between cyclodextrins and templates. While an interaction energy of −224.3 kJ mol⁻¹ at the interface between graphene and cyclodextrin led to few hundred nanometer 2D‐CDs, boron nitride with weaker interactions (−179.4 kJ mol⁻¹) resulted in polymers with millimeters lateral sizes. The secondary hydroxyl groups of 2D‐CDs are changed to sodium sulfate, and 2D polymers with the ability of simultaneous host‐guest and electrostatic interactions with biosystems including vessel plaques and herpes simplex virus (HSV) are obtained. The sulfated 2D‐CDs (2D‐CDSs) show a high ability for virus binding (IC50 = 6 µg mL⁻¹). Owing to their carbohydrate backbone, 2D‐CDs are novel heparin mimetics that can be formulated for efficient inhibition of viral infections.
Mechanochemistry, a sustainable synthetic method that minimizes solvent use, has shown great promise in producing metal-organic framework (MOF)-based biocomposites through ball milling. While ball milling offers fast reaction times, biocompatible conditions, and access to previously unattainable biocomposites, it is a batch-type process typically limited to gram-scale production, which is insufficient to meet commercial capacity. We introduce a scalable approach for the continuous solid-state production of MOF-based biocomposites. Our study commences with model batch reactions to examine the encapsulation of various biomolecules into Zeolitic Imidazolate Framework-8 (ZIF-8) via hand mixing, establishing a foundation for upscaling. Subsequently, the process is scaled up using reactive extrusion, enabling continuous and reproducible kilogram-scale production of bovine serum albumin (BSA) @ZIF-8 with tunable protein loading. Furthermore, we achieve the one-step formation of shaped ZIF-8 monoliths encapsulating clinical therapeutic hyaluronic acid (HA). Upon release of HA from the composite, the molecular weight of HA is preserved, highlighting the industrial potential of reactive extrusion for the cost-effective and reliable manufacturing of biocomposites for drug-delivery applications.
This paper suggests the use of high‐resolution Raman scattering bands of MgCa carbonates as posteriori thermometer minerals in archaeometric studies. Therefore, the thermal behavior of two dolomite samples and the hydration and carbonation reaction in air of the decomposition products were investigated by Raman microspectroscopy. The increase in the calcination temperature resulted in the formation of – Raman silent MgO and – inert Mg calcite at 700°C–750°C. In contrast, the decarbonation, hydration, and recarbonation of sample material exposed to 750°C–900°C in a muffle furnace led to the appearance of Mg‐free calcite. High spectral resolution Raman spectroscopy enabled a spectral distinction between these two groups due to differences in the band parameters (peak position, bandwidth) of the vibrational ( v 1 , v 4 , L ) modes of calcite. In combination with Raman microspectroscopic mapping, this spectral information represents a new approach for the estimation of burning temperatures of medieval high‐fired gypsum mortars via natural dolomite impurities. Thus, the results of this work highlight the importance and potential of Raman microspectroscopy as a thermometric tool for elucidating the thermal history of anthropogenic fired materials, with potential applications for archaeometry and art technology, as well as for quality controls in the frame of the production of mineral mortar binders and ceramics or bricks, respectively.
In addition to chemical composition, metallurgy, and welding parameters, the intensity of restraint is one of the key variables influencing solidification cracking (SC). Due to their high strength-to-density ratio, many modern lightweight steel constructions increasingly rely on high-strength steel. Given the theoretical framework of solidification cracking theory, tests tend to focus on the effects of strain rate. Externally restrained tests have provided valuable insights into solidification crack susceptibility. In practice, most welded structures are self-restrained; therefore, self-restraint tests more accurately reflect real-world applications. By varying the plate thickness in controlled thermal severity (CTS) tests conducted on S1100 QL, it was possible to adjust the intensity of restraint on fillet welds at a high level. Testing was performed using four different filler wires for gas metal arc welding (GMAW), including three solid wires and one metal-cored wire. Additionally, two sets of welding parameters were evaluated. High arc energy (U × I/welding speed) and increased welding speed were found to be more prone to solidification cracking compared to the parameter set with lower arc energy and welding speed. The results indicate a correlation between increasing restraint severity and a higher incidence of solidification cracking.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
Information