European Southern Observatory
  • Garching bei München, Germany
Recent publications
Quasi-periodic eruptions (QPEs) are rapid, recurring X-ray bursts from supermassive black holes, believed to result from interactions between accretion disks and surrounding matter. The galaxy SDSS1335+0728, previously stable for two decades, exhibited an increase in optical brightness in December 2019, followed by persistent active galactic nucleus (AGN)-like variability for 5 yr, suggesting the activation of a ~10⁶-M⊙ black hole. Since February 2024, X-ray emission has been detected, revealing extreme ~4.5-d QPEs with high fluxes and amplitudes, long timescales, large integrated energies and a ~25-d superperiod. Low-significance UV variations are reported, probably related to the long timescales and large radii from which the emission originates. This discovery broadens the possible formation channels for QPEs, suggesting that they are linked not solely to tidal disruption events but more generally to newly formed accretion flows, which we are witnessing in real time in a turn-on AGN candidate.
Cosmic reionization began when ultraviolet (UV) radiation produced in the first galaxies began illuminating the cold, neutral gas that filled the primordial Universe1,2. Recent James Webb Space Telescope (JWST) observations have shown that surprisingly UV-bright galaxies were in place beyond redshift z = 14, when the Universe was less than 300 Myr old3, 4–5. Smooth turnovers of their UV continua have been interpreted as damping-wing absorption of Lyman-α (Ly-α), the principal hydrogen transition6, 7, 8–9. However, spectral signatures encoding crucial properties of these sources, such as their emergent radiation field, largely remain elusive. Here we report spectroscopy from the JWST Advanced Deep Extragalactic Survey (JADES¹⁰) of a galaxy at redshift z = 13.0 that reveals a singular, bright emission line unambiguously identified as Ly-α, as well as a smooth turnover. We observe an equivalent width of EWLy-α > 40 Å (rest frame), previously only seen at z < 9 where the intervening intergalactic medium becomes increasingly ionized¹¹. Together with an extremely blue UV continuum, the unexpected Ly-α emission indicates that the galaxy is a prolific producer and leaker of ionizing photons. This suggests that massive, hot stars or an active galactic nucleus have created an early reionized region to prevent complete extinction of Ly-α, thus shedding new light on the nature of the earliest galaxies and the onset of reionization only 330 Myr after the Big Bang.
Ultra-hot Jupiters, an extreme class of planets not found in our Solar System, provide a unique window into atmospheric processes. The extreme temperature contrasts between their day and night sides pose a fundamental climate puzzle: how is energy distributed? To address this, we must observe the three-dimensional structure of these atmospheres, particularly their vertical circulation patterns that can serve as a testbed for advanced global circulation models, for example, in ref. ¹. Here we show a notable shift in atmospheric circulation in an ultra-hot Jupiter: a unilateral flow from the hot star-facing side to the cooler space-facing side of the planet sits below an equatorial super-rotational jet stream. By resolving the vertical structure of atmospheric dynamics, we move beyond integrated global snapshots of the atmosphere, enabling more accurate identification of flow patterns and allowing for a more nuanced comparison to models. Global circulation models based on first principles struggle to replicate the observed circulation pattern² underscoring a critical gap between theoretical understanding of atmospheric flows and observational evidence. This work serves as a testbed to develop more comprehensive models applicable beyond our Solar System as we prepare for the next generation of giant telescopes.
Filaments connecting haloes are a long-standing prediction of cold-dark-matter theories. Here we present a detection of the cosmic web emission connecting two quasar-host galaxies at redshift z ≈ 3.22 in the MUSE Ultra Deep Field (MUDF), observed with the Multi Unit Spectroscopic Explorer (MUSE) instrument. The very deep observations unlock a high-definition view of the filament morphology, a measure of the transition radius between the intergalactic and circumgalactic medium, and the characterization of the surface brightness profiles along the filament and in the transverse direction. Through systematic comparisons with simulations, we validate the filaments’ typical density predicted in the current cold-dark-matter model. Our analysis of the MUDF, an excellent laboratory for quantitatively studying filaments in emission, opens a new avenue to constrain the physical properties of the cosmic web and to trace the distribution of dark matter on large scales.
The study of transient and variable events, including novae, active galactic nuclei, and black hole binaries, has historically been a fruitful path for elucidating the evolutionary mechanisms of our universe. The study of such events in the millimeter and submillimeter is, however, still in its infancy. Submillimeter observations probe a variety of materials, such as optically thick dust, which are hard to study in other wavelengths. Submillimeter observations are sensitive to a number of emission mechanisms, from the aforementioned cold dust, to hot free-free emission, and synchrotron emission from energetic particles. Study of these phenomena has been hampered by a lack of prompt, high sensitivity submillimeter follow-up, as well as by a lack of high-sky-coverage submillimeter surveys. In this paper, we describe how the proposed Atacama Large Aperture Submillimeter Telescope (AtLAST) could fill in these gaps in our understanding of the transient universe. We discuss a number of science cases that would benefit from AtLAST observations, and detail how AtLAST is uniquely suited to contributing to them. In particular, AtLAST’s large field of view will enable serendipitous detections of transient events, while its anticipated ability to get on source quickly and observe simultaneously in multiple bands make it also ideally suited for transient follow-up. We make theoretical predictions for the instrumental and observatory properties required to significantly contribute to these science cases, and compare them to the projected AtLAST capabilities. Finally, we consider the unique ways in which transient science cases constrain the observational strategies of AtLAST, and make prescriptions for how AtLAST should observe in order to maximize its transient science output without impinging on other science cases.
Understanding the physical characteristics of small bodies in the Solar System is crucial for refining models of their formation and evolution. Although several kilometre-sized asteroids have already been visited by spacecraft, 1998 KY26 will be the first asteroid in the decametre range to be explored in situ. Its diameter and spin period place it above the spin barrier, suggesting that its formation and properties may differ from those of previously visited bodies. However, the key physical characteristics of 1998 KY26 remain poorly understood. We conducted a photometric observing campaign during 1998 KY26’s close approach to Earth in 2024. Our observations revealed that 1998 KY26 has a high optical albedo and colours consistent with an E-type taxonomy. We also determined its spin period to be (5.3516 ± 0.0001) minutes—twice as fast as previously reported. Using lightcurve inversion methods, we derived a retrograde pole solution and constructed convex and non-convex shape models. By integrating these models with Goldstone radar data from 1998, we estimated 1998 KY26’s diameter to be (11 ± 2) m. The most likely structure for 1998 KY26 is monolithic, yet a fine grained rubble-pile structure is theoretically possible given its required small strength level. We found that it will be possible to validate these results with future JWST observations. Our comprehensive characterisation of 1998 KY26 can inform the planning of the Hayabusa2# spacecraft’s rendezvous encounter, scheduled for July 2031. Additionally, it provides valuable insights into the non-gravitational forces acting on small Solar System bodies, enhancing our understanding of their orbital evolution which could shed light on the nature of dark comets.
Strong gravitational magnification enables the detection of faint background sources and allows researchers to resolve their internal structures and even identify individual stars in distant galaxies. Highly magnified individual stars are useful in various applications, including studies of stellar populations in distant galaxies and constraining dark matter structures in the lensing plane. However, these applications have been hampered by the small number of individual stars observed, as typically one or a few stars are identified from each distant galaxy. Here, we report the discovery of more than 40 microlensed stars in a single galaxy behind Abell 370 at redshift of 0.725 (dubbed ‘the Dragon arc’) when the Universe was half of its current age, using James Webb Space Telescope observations with the time-domain technique. These events were found near the expected lensing critical curves, suggesting that these are magnified stars that appear as transients from intracluster stellar microlenses. Through multi-wavelength photometry, we constrained their stellar types and found that many of them are consistent with red giants or supergiants magnified by factors of hundreds. This finding reveals a high occurrence of microlensing events in the Dragon arc and demonstrates that time-domain observations by the James Webb Space Telescope could lead to the possibility of conducting statistical studies of high-redshift stars.
Recent observations have found a large number of supermassive black holes already in place in the first few hundred million years after the Big Bang, many of which seem to be overmassive relative to their host galaxy stellar mass when compared with local relation1, 2, 3, 4, 5, 6, 7, 8–9. Several different models have been proposed to explain these findings, ranging from heavy seeds to light seeds experiencing bursts of high accretion rate10, 11, 12, 13, 14, 15–16. Yet, current datasets are unable to differentiate between these various scenarios. Here we report the detection, from the JADES survey, of broad Hα emission in a galaxy at z = 6.68, which traces a black hole with a mass of about 4 × 10⁸M⊙ and accreting at a rate of only 0.02 times the Eddington limit. The black hole to host galaxy stellar mass ratio is about 0.4—that is, about 1,000 times above the local relation—whereas the system is closer to the local relations in terms of dynamical mass and velocity dispersion of the host galaxy. This object is most likely an indication of a much larger population of dormant black holes around the epoch of reionization. Its properties are consistent with scenarios in which short bursts of super-Eddington accretion have resulted in black hole overgrowth and massive gas expulsion from the accretion disk; in between bursts, black holes spend most of their life in a dormant state.
High-resolution absorption spectroscopy toward bright background sources has had a paramount role in understanding early galaxy formation, the evolution of the intergalactic medium and the reionisation of the Universe. However, these studies are now approaching the boundaries of what can be achieved at ground-based 8-10m class telescopes. The identification of primeval systems at the highest redshifts, within the reionisation epoch and even into the dark ages, and of the products of the first generation of stars and the chemical enrichment of the early Universe, requires observing very faint targets with a signal-to-noise ratio high enough to detect very weak spectral signatures. In this paper, we describe the giant leap forward that will be enabled by ANDES, the high-resolution spectrograph for the ELT, in these key science fields, together with a brief, non-exhaustive overview of other extragalactic research topics that will be pursued by this instrument, and its synergistic use with other facilities that will become available in the early 2030s.
Small bodies are capable of delivering essential prerequisites for the development of life, such as volatiles and organics, to the terrestrial planets. For example, empirical evidence suggests that water was delivered to the Earth by hydrated planetesimals from distant regions of the Solar System. Recently, several morphologically inactive near-Earth objects were reported to experience significant nongravitational accelerations inconsistent with radiation-based effects, and possibly explained by volatile-driven outgassing. However, these “dark comets” display no evidence of comae in archival images, which are the defining feature of cometary activity. Here, we report detections of nongravitational accelerations on seven additional objects classified as inactive (doubling the population) that could also be explainable by asymmetric mass loss. A detailed search of archival survey and targeted data rendered no detection of dust activity in any of these objects in individual or stacked images. We calculate dust production limits of ∼ 10, 0.1 , and 0.1 kg s − 1 for 1998 FR 11 , 2001 ME 1 , and 2003 RM with these data, indicating little or no dust surrounding the objects during the observations. This set of dark comets reveals the delineation between two distinct populations: larger, “outer” dark comets on eccentric orbits that are end members of a continuum in activity level of comets, and smaller, “inner” dark comets on near-circular orbits that could signify a different different population. These objects may trace various stages in the life cycle of a previously undetected, but potentially numerous, volatile-rich population that may have provided essential material to the Earth.
Most stars in today’s Universe reside within spheroids, which are bulges of spiral galaxies and elliptical galaxies1,2. Their formation is still an unsolved problem3, 4–5. Infrared/submillimetre-bright galaxies at high redshifts⁶ have long been suspected to be related to spheroid formation7, 8, 9, 10, 11–12. Proving this connection has been hampered so far by heavy dust obscuration when focusing on their stellar emission13, 14–15 or by methodologies and limited signal-to-noise ratios when looking at submillimetre wavelengths16,17. Here we show that spheroids are directly generated by star formation within the cores of highly luminous starburst galaxies in the distant Universe. This follows from the ALMA submillimetre surface brightness profiles, which deviate substantially from those of exponential disks, and from the skewed-high axis-ratio distribution. Most of these galaxies are fully triaxial rather than flat disks: the ratio of the shortest to the longest of their three axes is half, on average, and increases with spatial compactness. These observations, supported by simulations, reveal a cosmologically relevant pathway for in situ spheroid formation through starbursts that is probably preferentially triggered by interactions (and mergers) acting on galaxies fed by non-coplanar gas accretion streams.
Within the established framework of structure formation, galaxies start as systems of low stellar mass and gradually grow into far more massive galaxies. The existence of massive galaxies in the first billion years of the Universe, as suggested by recent observations, seems to challenge this model, as such galaxies would require highly efficient conversion of baryons into stars. An even greater challenge in this epoch is the existence of massive galaxies that have already ceased forming stars. However, robust detections of early massive quiescent galaxies have been challenging due to the coarse wavelength sampling of photometric surveys. Here we report the spectroscopic confirmation with the James Webb Space Telescope of the quiescent galaxy RUBIES-EGS-QG-1 at redshift z = 4.90, 1.2 billion years after the Big Bang. Deep stellar absorption features in the spectrum reveal that the stellar mass of the galaxy of 10¹¹ M⊙ formed in a short 200 Myr burst of star formation, after which star formation activity dropped rapidly and persistently. According to current galaxy formation models, systems with such rapid stellar mass growth and early quenching are too rare to plausibly occur in the small area probed spectroscopically with JWST. Instead, the discovery of RUBIES-EGS-QG-1 implies that early massive quiescent galaxies can be quenched earlier or exhaust gas available for star formation more efficiently than assumed at present.
The central parsec of AGN is a key region for the launching of winds, and near-infrared interferometry is a unique tool for its study. With GRAVITY at the VLT interferometer, we can now spatially resolve not just the hot dust continuum on milliarcsecond ‘torus’ scales through imaging but also the broad-line region (BLR) on microarcsecond scales through spectro-astrometry. We have mapped the kinematics of the BLR in seven nearby AGN, measured sizes of the hot dust for seventeen AGN, and reconstructed dust images for two AGN. BLR kinematics has allowed us to measure the BLR size and supermassive black hole mass independent of reverberation mapping. The ongoing GRAVITY+ upgrade will greatly enhance the sensitivity and sky coverage of GRAVITY, and first results demonstrate its power for AGN science at z∼2 and beyond.
Cosmological simulations fail to reproduce realistic galaxy populations without energy injection from active galactic nuclei (AGN) into the interstellar medium (ISM) and circumgalactic medium (CGM); a process called ‘AGN feedback’. Consequently, observational work searches for evidence that luminous AGN impact their host galaxies. Here, we review some of this work. Multi-phase AGN outflows are common, some with potential for significant impact. Additionally, multiple feedback channels can be observed simultaneously; e.g., radio jets from ‘radio quiet’ quasars can inject turbulence on ISM scales, and displace CGM-scale molecular gas. However, caution must be taken comparing outflows to simulations (e.g., kinetic coupling efficiencies) to infer feedback potential, due to a lack of comparable predictions. Furthermore, some work claims limited evidence for feedback because AGN live in gas-rich, star-forming galaxies. However, simulations do not predict instantaneous, global impact on molecular gas or star formation. The impact is expected to be cumulative, over multiple episodes.
We present deep near-infrared KsK_\textrm{s} -band imaging for 35 of the 53 sources from the high-redshift ( z>2z \gt 2 ) radio galaxy candidate sample defined in Broderick et al. (2022, PASA, 39, e061). These images were obtained using the High-Acuity Widefield K -band Imager (HAWK-I) on the Very Large Telescope. Host galaxies are detected for 27 of the sources, with Ks21.6K_\textrm{s} \approx 21.6 –23.0 mag (2 ^{\prime\prime} diameter apertures; AB). The remaining eight targets are not detected to a median 3\unicode{x03C3} depth of Ks23.3K_\textrm{s} \approx 23.3 mag (2 ^{\prime\prime} diameter apertures). We examine the radio and near-infrared flux densities of the 35 sources, comparing them to the known z>3z \gt 3 powerful radio galaxies with 500-MHz radio luminosities L500MHz>1027L_{500\,\textrm{MHz}} \gt 10^{27} W Hz 1^{-1} . By plotting 150-MHz flux density versus KsK_\textrm{s} -band flux density, we find that, similar to the sources from the literature, these new targets have large radio to near-infrared flux density ratios, but extending the distribution to fainter flux densities. Five of the eight HAWK-I deep non-detections have a median 3\unicode{x03C3} lower limit of Ks23.8K_\textrm{s} \gtrsim 23.8 mag (1 .\!^{\prime\prime} 5 diameter apertures); these five targets, along with a further source from Broderick et al. (2022, PASA, 39, e061) with a deep non-detection ( Ks23.7K_\textrm{s} \gtrsim 23.7 mag; 3\unicode{x03C3} ; 2 ^{\prime\prime} diameter aperture) in the Southern H-ATLAS Regions KsK_\textrm{s} -band Survey, are considered candidates to be ultra-high-redshift ( z>5z \gt 5 ) radio galaxies. The extreme radio to near-infrared flux density ratios ( >105\gt 10^5 ) for these six sources are comparable to TN J0924 - 2201, GLEAM J0856 + 0223 and TGSS J1530 + 1049, the three known powerful radio galaxies at z>5z \gt 5 . For a selection of galaxy templates with different stellar masses, we show that z4.2z \gtrsim 4.2 is a plausible scenario for our ultra-high-redshift candidates if the stellar mass M*1010.5M_\textrm{*} \gtrsim 10^{10.5} M _\odot . In general, the 35 targets studied have properties consistent with the previously known class of infrared-faint radio sources. We also discuss the prospects for finding more UHzRG candidates from wide and deep near-infrared surveys.
The light climate at high latitudes, in particular the extended twilight of winter and the reduced diel variation in light level in midsummer and midwinter, potentially constrains visual function and the synchronisation of temporal organisation in polar species. In this paper, we describe the temporal pattern and variation in the spectral composition and brightness of skylight (daylight, twilight, moonlight, starlight, airglow and aurorae) at high latitudes and review photoreception of reindeer/caribou (Rangifer tarandus; ‘Rangifer’) which is one of the few polar resident species for which data are available. Experimental data indicate that the rods of Rangifer may be stimulated by levels of ambient light lower than those occurring during astronomical twilight (solar angle <−18°). Several features of the eyes of Rangifer contribute to their visual capability under extended twilight. These include transmission of UV through the optical media, which enables the animals to exploit the shorter wavelengths characteristic of twilight, and a shift in the peak spectral reflectance of the tapetum lucidum (TL) from around 640 nm in summer to around 450 nm in winter, which increases retinal illumination at short wavelengths. Enhanced sensitivity to short wavelengths is likely to enhance the contrast of some objects and hence the ability of Rangifer to discriminate forage plants and to detect other animals (conspecifics or predators) against a snowy background under low illuminance. There is, nevertheless, currently no evidence of any specific boreal adaptation in their visual system: (i) The eyes of Rangifer, and by inference the area of the dilated pupil, are no larger than expected based on the allometry of eye size in ruminants. (ii) There is no evidence of a change in the spectral sensitivity of photoreceptors associated with detection of UVa. (iii) Transmission of UV through the anterior eye is not unique to Rangifer. (iv) The blue shift in the reflectance of the winter TL appears to be a passive response to prolonged dilation of the pupil and there is no a priori reason not to predict the same response in other large ungulates exposed to low light levels. (v) There is no conclusive evidence of a seasonal shift in absolute retinal sensitivity in Rangifer. (vi) Weak circadian organisation in Rangifer has tentatively been linked to mutations within the circadian molecular clockwork but it remains unclear to what extent this represents a specific adaptation to high latitude. Read the free Plain Language Summary for this article on the Journal blog.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
318 members
Federico Montesino Pouzols
  • Science Operation Software Department, ALMA Computing Team, Pipeline Systems Group
Preben Grosboel
  • Directorate of Science
Fernando Selman
  • La Silla Paranal Observatory Division
Raquel Yumi Shida
  • Directorate of Science
Information
Address
Garching bei München, Germany