Epitarget as
  • Oslo, Norway
Recent publications
Novel acoustically sensitive drug carrying particles comprising non-lamellar forming lipids are disclosed, as well as uses and methods thereof. The drug carrying particles accumulate in the diseased target tissue and efficiently release their payload upon exposure to acoustic energy.
Novel acoustically sensitive drug carrying particles comprising non-lamellar forming lipids are disclosed, as well as uses and methods thereof. The drug carrying particles accumulate in the diseased target tissue and efficiently release their payload upon exposure to acoustic energy.
Abstract The combination of liposomal doxorubicin (DXR) and confocal ultrasound (US) was investigated for the enhancement of drug delivery in a rat tumour model. The liposomes, based on the unsaturated phospholipid dierucoylphosphocholine, were designed to be stable during blood circulation in order to maximize accumulation in tumour tissue and to release drug content upon US stimulation. A confocal US setup was developed for delivering inertial cavitation to tumours in a well-controlled and reproducible manner. In vitro studies confirm drug release from liposomes as a function of inertial cavitation dose, while in vivo pharmacokinetic studies show long blood circulation times and peak tumour accumulation at 24-48 h post intravenous administration. Animals injected 6 mg kg(-1) liposomal DXR exposed to US treatment 48 h after administration show significant tumour growth delay compared to control groups. A liposomal DXR dose of 3 mg kg(-1), however, did not induce any significant therapeutic response. This study demonstrates that inertial cavitation can be generated in such a fashion as to disrupt drug carrying liposomes which have accumulated in the tumour, and thereby increase therapeutic effect with a minimum direct effect on the tissue. Such an approach is an important step towards a therapeutic application of cavitation-induced drug delivery and reduced chemotherapy toxicity.
This work examines the use of lanthanide-based contrast agents and magnetic resonance imaging in monitoring liposomal behavior in vivo. Dysprosium (Dy) and gadolinium (Gd) chelates, Dy-diethylenetriaminepentaacetic acid bismethylamide (Dy-DTPA-BMA) and Gd-DTPA-BMA, were encapsulated in pegylated distearoylphosphatidylethanolamine-based (saturated) liposomes, and then intravenously injected into Copenhagen rats with subcutaneous Dunning AT2 xenografts. Liposome-encapsulated Dy chelate shortens transverse relaxation times (T2 and T2*) of tissue; thus, liposomal accumulation in the tumor can be monitored by observing the decrease in T2* relaxation time over time. The tumor was treated at the time of maximum liposomal accumulation (48 h) with confocal, cavitating high-intensity focused ultrasound to induce liposomal payload release. Using liposome-encapsulated Gd chelate at high enough concentrations and saturated liposomal phospholipids induces an exchange-limited longitudinal (T1) relaxation when the liposomes are intact; when the liposomes are released, exchange limitation is relieved, thus allowing in vivo observation of payload release as a decrease in tumor T1.
Combining liposomally encapsulated cytotoxic drugs with ultrasound exposure has improved the therapeutic response to cancer in animal models; however, little is known about the underlying mechanisms. This study focused on investigating the effect of ultrasound exposures (1 MHz and 300 kHz) on the delivery and distribution of liposomal doxorubicin in mice with prostate cancer xenografts. The mice were exposed to ultrasound 24 h after liposome administration to study the effect on release of doxorubicin and its penetration through the extracellular matrix. Optical imaging methods were used to examine the effects at both microscopic subcellular and macroscopic tissue levels. Confocal laser scanning microscopy revealed that ultrasound-exposed tumors had increased levels of released doxorubicin compared with unexposed control tumors and that the distribution of liposomes and doxorubicin through the tumor tissue was improved. Whole-animal optical imaging revealed that liposomes were taken up by both abdominal organs and tumors.
Ultrasound is investigated as a novel drug delivery tool within cancer therapy. Non-thermal ultrasound treatment of solid tumours post i.v.-injection of drug-carrying liposomes may induce local drug release from the carrier followed by enhanced intracellular drug uptake. Recently, ultrasound-mediated drug release of liposomes (sonosensitivity) was shown to strongly depend on liposome membrane composition. In the current study the ultrasound-mediated drug release mechanism of liposomes was investigated. The results showed that differences in ultrasound drug release kinetics obtained for different liposomal compositions were caused by distinctive release mechanisms of the carriers. Two types of liposomes composed of 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) and hydrogenated soy l-α-phosphatidylcholine (HSPC) as main lipids, respectively, were recently shown to vary in sonosensitivity. Here, these liposomes were analyzed prior to and after a given ultrasound-exposure for their mean size, size distribution and morphology. Cryo-transmission electron microscopy, dynamic light scattering and asymmetric flow field-flow fractionation in combination with multi-angle light scattering revealed a significant change in mean size, size distribution and morphology of DOPE-based liposomes after ultrasound, pointing to an irreversible disruption of the vesicles and concomitant drug release. In contrast, the HSPC-based liposomes remained unchanged in size and structure after ultrasound application, indicating pore-mediated release mechanisms. The results show that the release mechanisms and interactions between ultrasound and liposomes depend on the liposome membrane-composition, explaining their sonosensitive properties.
The mechanism involved in the ultrasoundenhanced intracellular delivery of fluorescein-isothiocyanate (FITC)-dextran (molecular weight 4 to 2000 kDa) and liposomes containing doxorubicin (Dox) was studied using HeLa cells and an ultrasound transducer at 300 kHz, varying the acoustic power. The cellular uptake and cell viability were measured using flow cytometry and confocal microscopy. The role of endocytosis was investigated by inhibiting clathrin- and caveolae-mediated endocytosis, as well as macropinocytosis. Microbubbles were found to be required during ultrasound treatment to obtain enhanced cellular uptake. The percentage of cells internalizing Dox and dextran increased with increasing mechanical index. Confocal images and flow cytometric analysis indicated that the liposomes were disrupted extracellularly and that released Dox was taken up by the cells. The percentage of cells internalizing dextran was independent of the molecular weight of dextrans, but the amount of the small 4-kDa dextran molecules internalized per cell was higher than for the other dextrans. The inhibition of endocytosis during ultrasound exposure resulted in a significant decrease in cellular uptake of dextrans. Therefore, the improved uptake of Dox and dextrans may be a result of both sonoporation and endocytosis.
Dioeleoylphosphatidylethanolamine (DOPE)-based liposomes were recently reported as a new class of liposomes for ultrasound (US)-mediated drug delivery. The liposomes showed both high stability and in vitro US-mediated drug release (sonosensitivity). In the current study, in vivo proof of principle in terms of US triggered release in tumoured mice was demonstrated using optical imaging. Confocal non-thermal US was used to deliver cavitation to tumours in a well-controlled manner. To detect in vivo release, the near infrared fluorochrome Al (III) Phthalocyanine Chloride Tetrasulphonic acid (AlPcS(4)) was encapsulated into both DOPE-based liposomes and control liposomes based on hydrogenated soy phosphatidylcholine (HSPC). Encapsulation causes concentration dependent quenching of fluorescence that is recovered upon AlPcS(4) release from the liposomes. Exposure of tumours to US resulted in a significant increase in fluorescence in mice administered with DOPE-based liposomes, but no change in the mice treated with HSPC-based liposomes. Thus, DOPE-based liposomes showed superior sonosensitivity compared to HSPC-based liposomes in vivo.
Ultrasound enhances the release of drugs from liposomes, and in solution this is shown to be caused by cavitation. However, the mechanism in tissue is unclear, and there is a need to bridge the gap between results obtained in solution and in tissue. Thus, we studied the release of liposomal doxorubicin in 5% w/v type I rattail collagen gels when subjected to 300 MHz ultrasound. Confocal laser scanning imaging was used to characterize the gels before and after the treatment, and for determining the release of doxorubicin. The results indicate that drug release in collagen gels is similar to that in liquid, due to mechanical effects (cavitation) rather than thermal ones. Release was shown to be highly dependent on the presence of gas bubbles by degassing and adding controlled amounts of gas contrast bubbles, and the drug release correlated with the presence of OH radicals. Compared to experiments in solution, the threshold at which such effects happen is similar, at a negative pressure of 0.9 MPa, but the maximum release is halved for identical treatment.
Combining ultrasound exposure and liposomal encapsulated anti-cancer drugs has beneficial synergistic effects in cancer therapy, although little is known about the underlying mechanisms. This study has focused on investigating the effect of different ultrasound exposures (1 MHz and 300 kHz) on delivery and distribution of liposomal doxorubicin in Balb/c nude mice bearing prostate cancer xenografts. Ultrasound exposure was done 24 h after administration of liposomes to study the effect on liposomes present in extracellular matrix. Optical imaging methods were used to evaluate the effects of the ultrasound exposures both on subcellular microscopic level and macroscopically of organs. Confocal laser scanning microscopy revealed that ultrasound-exposed tumors had increased amounts of released doxorubicin in tumor tissue compared to unexposed control tumors. Image analysis demonstrated an increased distance from blood vessels to areas with liposomes and released doxorubicin in tumors exposed to 1 MHz ultrasound. Whole animal optical imaging showed uptake of liposomes both in normal tissue as well as tumor tissue.
Targeted and triggered release of liposomal drug using heat or ultrasound represents a promising treatment modality able to increase the therapeutic-totoxicity ratio of encapsulated drugs. To study the ability for high-intensity focused ultrasound to induce liposomal drug release mainly by focused inertial cavitation in vitro and in an animal model. A 1 MHz ultrasound setup has been developed for in vitro and in vivo drug release from a specific liposomal doxorubicin formulation at a target cavitation dose. Controlled cavitation at 1 MHz was applied within the tumors 48 hours after liposome injection according to preliminary pharmacokinetic study. A small non-significant therapeutic effect of US-liposomal treatment was observed compared to liposomes alone suggesting no beneficial effect of ultrasound in the current setup. The in vitro study provided a suitable ultrasound setup for delivering a cavitation dose appropriate for safe liposomal drug release. However, when converting to an in vivo model, no therapeutic benefit was observed. This may be due to a number of reasons, one of which may be the difficulty in converting in vitro findings to an in vivo model. In light of these findings, we discuss important design features for future studies.
The ultrasound exposure parameters that maximize drug release from dierucoyl-phosphatidylcholine (DEPC)-based liposomes were studied using two transducers operating at 300 kHz and 1 MHz. Fluorescent calcein was used as a model drug, and the release from liposomes in solution was measured using a spectrophotometer. The release of calcein was more efficient at 300 kHz than at 1 MHz, with thresholds of peak negative pressures of 0.9 MPa and 1.9 MPa, respectively. Above this threshold, the release increased with increasing peak negative pressure, mechanical index (MI), and duty cycle. The amount of drug released followed first-order kinetics and increased with exposure time to a maximal release. To increase the release further, the MI had to be increased. The results demonstrate that the MI and the overall exposure time are the major parameters that determine the drug's release. The drug's release is probably due to mechanical (cavitation) rather than thermal effects, and that was also confirmed by the detection of hydroxide radicals.
Liposomal encapsulation of cytostatics improves drug delivery to tumour tissue and reduces dose-limiting systemic toxicities. Development and evaluation of new liposome formulations is time consuming and costly with high demands for experimental animals. A faster and less demanding means of comparing several product candidates may be provided by use of non-invasive methods for assessing pharmacokinetics and biodistribution. In this study we have evaluated the feasibility of using small animal fluorescence optical imaging as a strategy to study liposome accumulation in tumours. Liposomal doxorubicin (Caelyx®) was labelled with a lipophilic carbocyanine tracer and administered to tumour-bearing mice. Subsequently, the in vivo distribution of the labelled liposomes was followed over time by fluorescent optical imaging. The results revealed a gradual increase in tumour fluorescence, indicating accumulation of the liposomes reaching plateau levels at 48 h post injection. However, due to loss of dye from liposomes during circulation combined with substantial scattering and absorption of in vivo fluorescent signal, reliable quantitative correlation between the biodistribution profile of the labelled liposomes and doxorubicin could not be obtained.
Ultrasound sensitive (sonosensitive) liposomes represent a drug delivery system designed for releasing a drug load upon exposure to ultrasound (US). Inclusion of dioleoylphosphatidylethanolamine (DOPE) in liposome membranes was previously shown to induce sonosensitivity. Long blood circulation time of the liposomal drug is required for high tumour uptake and efficient US-mediated drug delivery. In this study, blood pharmacokinetics of DOPE-based liposomal doxorubicin (DXR) were evaluated in non-tumoured mice. A markedly faster blood clearance of DXR was observed for DOPE-rich liposomes compared to Caelyx® (standard liposomal DXR). Subsequently, liposome membrane composition was altered to improve drug retention in the bloodstream, whilst maintaining sonosensitivity. Formulations with reduced blood clearance of DXR were obtained by reducing the content of DOPE from 62 to 32 or 25 mol%. These formulations showed long blood circulation time, as approximately 20% of the administered DXR dose was present in the bloodstream 24 h after intravenous injection. The reduction in liposomal DOPE content did not significantly reduce US-mediated DXR release in vitro, indicating that DOPE is a potent modulator of sonosensitivity. The novel liposome formulations, containing moderate amounts of DOPE, displayed similar blood pharmacokinetic profiles as standard liposomal DXR, but a markedly improved sonosensitivity.
Liposomal encapsulation of doxorubicin (DXR) improves tumor accumulation and reduces adverse effects. One possible strategy for further optimization of this delivery technology would be to design the liposome carrier to release its content within the tumor tissue in response to specific stimuli such as ultrasound (US). In this study, the tumor uptake properties and therapeutic efficacy of 1,2 distearoyl-sn-glycero-3-phosphatidylethanolamine-based liposomes containing DXR were investigated in nude mice bearing tumor xenografts. The liposomal DXR formulation alone showed no inhibitory effect on tumor growth. However, upon exposure to low frequency US in situ inhibition of tumor growth was demonstrated.
The effect of membrane composition on calcein release from dioleoylphosphatidylethanolamine (DOPE)-based liposomes on exposure to low doses of 1.13 MHz focused ultrasound (US) was investigated by multivariate analysis, with the goal of designing liposomes for US-mediated drug delivery. Regression analysis revealed a strong correlation between sonosensitivity and the non-bilayer forming lipids DOPE and pegylated distearoylphosphatidylethanolamine (DSPE-PEG 2000), with DOPE having the strongest impact. Unlike most of the previously studied distearoylphosphatidylethanolamine (DSPE)-based liposomes, all the current DOPE-based liposome formulations were found stable in 20% serum in terms of drug retention.
Novel sonosensitive doxorubicin-containing liposomes comprising dioleoylphosphatidylethanolamine (DOPE) as the main lipid constituent were developed and characterized in terms of ultrasound-mediated drug release in vitro. The liposome formulation showed high sonosensitivity; where approximately 95% doxorubicin was released from liposomes after 6min of 40kHz US exposure in buffered sucrose solution. This represented a 30% increase in release extent in absolute terms compared to liposomes comprising the saturated lipid analogue distearoylphosphatidylethanolamine (DSPE), and a 9-fold improvement in release extent when compared to standard pegylated liposomal doxorubicin, respectively. Ultrasound release experiments in the presence of serum showed a significantly reduction in sonosensitivity of DSPE-based liposomes, whilst the release properties of DOPE-based liposomes were essentially maintained. Dynamic light scattering measurements and cryo-transmission electron microscopy of DOPE-based liposomes after ultrasound treatment indicated liposome disruption and formation of various lipid structures, corroborating the high release extent. The results point to the potential of DOPE-based liposomes as a new class of drug carriers for ultrasound-mediated drug delivery.
The mechanical properties of liposome membranes are strongly dependent on type and ratio of lipid compounds, which can have important role in drug targeting and release processes when liposome is used as drug carrier. In this work we have used Brewster's angle microscopy to monitor the lateral compression process of lipid monolayers containing as helper lipids either distearoyl phosphatidylethanolamine (DSPE) or dioleoyl phophatidylethanolamine (DOPE) molecules on the Langmuir trough. The compressibility coefficient was determined for lipid blend monolayers containing the helper lipids above, cholesterol, distearoyl phosphatidylcholine (DSPC) and pegylated-DSPE at room temperature. Two variables, the cholesterol fraction and the ratio ρ between the helper lipid (either DSPE or DOPE) and the reference lipid DSPC, were studied by multivariate analysis to evaluate their impact on the compressibility coefficient of the monolayers. The cholesterol level was found to be the most significant variable for DSPE blends while the ratio ρ was the most significant one for DOPE blend monolayers. It was also found that these two variables can exhibit positive interaction and the same compressibility value can be obtained with different blend compositions.
The ability of ultrasound (US) to permeabilize phospholipid membranes has opened the potential of using US as a means to enhance delivery of anti-cancer drugs to tumour cells via liposomes. In this study, novel US sensitive or sonosensitive doxorubicin-containing liposomes based on 1,2 distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE) as the main lipid component are reported. A variety of lipid bilayer compositions was studied with respect to in vitro US triggered release of drug as well as serum stability in terms of drug retention, using experimental design. The multivariate data analysis indicated a strong correlation between DSPE content and sonosensitivity, both alone and in interplay with cholesterol. The most optimal formulation showed approximately 70% release of doxorubicin after 6min of US exposure. This represented a 7-fold increase in release extent when compared to standard pegylated liposomal doxorubicin. The significant enhancement in sonosensitivity of the liposomes shows the potential of engineering liposomal lipid composition for US-mediated drug delivery.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
1 member
Mark Schlack
  • Editorial
Oslo, Norway