791
2,397.87
3.03
685

Recent PublicationsView all

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We construct Q-operators for the open spin-1/2 XXX Heisenberg spin chain with diagonal boundary matrices. The Q-operators are defined as traces over an infinite-dimensional auxiliary space involving novel types of reflection operators derived from the boundary Yang-Baxter equation. We argue that the Q-operators defined in this way are polynomials in the spectral parameter and show that they commute with transfer matrix. Finally, we prove that the Q-operators satisfy Baxter's TQ-equation and derive the explicit form of their eigenvalues in terms of the Bethe roots.
    Full-text · Article · Sep 2015 · Nuclear Physics B
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using measures of entanglement such as negativity and tangles we provide a detailed analysis of entanglement structures in pure states of non-interacting qubits. The motivation for this exercise primarily comes from holographic considerations, where entanglement is inextricably linked with the emergence of geometry. We use the qubit systems as toy models to probe the internal structure, and introduce some useful measures involving entanglement negativity to quantify general features of entanglement. In particular, our analysis focuses on various constraints on the pattern of entanglement which are known to be satisfied by holographic sates, such as the saturation of Araki-Lieb inequality (in certain circumstances), and the monogamy of mutual information. We argue that even systems as simple as few non-interacting qubits can be useful laboratories to explore how the emergence of the bulk geometry may be related to quantum information principles.
    Preview · Article · May 2015 · Journal of Physics A Mathematical and Theoretical
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We introduce a set of multi-way dual Cheeger constants and prove universal higher-order dual Cheeger inequalities for eigenvalues of normalized Laplace operators on weighted finite graphs. Our proof proposes a new spectral clustering phenomenon deduced from metrics on real projective spaces. We further extend those results to a general reversible Markov operator and find applications in characterizing its essential spectrum.
    Full-text · Article · Jan 2015 · Advances in Mathematics
Information provided on this web page is aggregated encyclopedic and bibliographical information relating to the named institution. Information provided is not approved by the institution itself. The institution’s logo (and/or other graphical identification, such as a coat of arms) is used only to identify the institution in a nominal way. Under certain jurisdictions it may be property of the institution.