Chinese Academy of Agricultural Sciences
Recent publications
The degradation of titin could make the myofibrillar fragmentation to improve meat tenderization during postmortem. This study aimed to investigate effect of phosphorylation on titin degradation. Protein kinase A (PKA) and alkaline phosphatase (AP) were added to crude titin extracted from ovine longissimus lumborum (LL) muscles. Phosphorylated/dephosphorylated titin were incubated with μ-calpain at 4 °C for 2 days. Results showed titin in AP group started degradation earlier than that in PKA and control groups. There were 20, 16 and 12 phosphorylated sites identified by iTRAQ in the PKA, control and AP group, respectively. 3D structure of dephosphorylated titin fragment was simulated and its molecular dynamics trajectory analysis was performed using Discovery StudioTM. The dihedral angle in AP group was less and the dephosphorylated fragment had a higher kinetic energy and total energy. We suggested that changes caused by AP treatment might make titin unstable, which easily degraded by μ-calpain.
The transport of excess nutrients into freshwater systems constitutes a serious risk to both water quality and aquatic health. Vegetated buffer zones (VBZs) next to waterways are increasingly used in many parts of the world to successfully intercept and eliminate pollutants and other materials in overland flow, especially in warm or temperate regions. The major processes for the retention of pollutants in VBZ are microbial degradation, infiltration, deposition, filtration, adsorption, degradation, assimilation, etc. The effectiveness of the VBZ relies on several environmental factors, including BZ width, runoff intensity, slope, soil texture, temperature, vegetation type, etc. Among the reported factors, cold weather possesses the most detrimental impact on many of the processes that VBZ are designed to carry out. The freezing temperatures result in ice formation, interrupting biological activity, infiltration and sorption, etc. In the last twenty years, burgeoning research has been carried out on the reduction of diffuse nutrient pollution losses from agricultural lands using VBZ. Nonetheless, a dearth of studies has dealt with the problems and concerns in cold climates, representing an important knowledge gap in this area. In addition, the effectiveness of VBZ in terms of nutrient removal abilities varies from -136% to 100%, a range that reveals the incertitude surrounding the role of VBZ in cold regions. Moreover, frozen soils and plants may release nutrients after undergoing several freeze-thaw cycles followed by runoff events in spring snowmelt. This review suggests that the management and design of VBZ in cold climates needs close examination, and these systems might not frequently serve as a good management approach to decrease nutrient movement.
A novel calcium-binding peptide from bovine bone collagen hydrolysate was screened based on a new target-the calcium-sensing receptor (CaSR), and its chelation mechanism and calcium absorption activity were investigated. Glu-Tyr-Gly exhibited superior binding affinities to CaSR because of its interaction with the active sites of the CaSR Venus Flytrap (VFT) domain. Glu-Tyr-Gly-Ca may exist in five potential chelation modes and its potential chelation mechanism was that calcium ions were located in the center and surrounded by ionic bonds (carboxyl group) and coordination bonds (carbonyl, amino, and carboxyl group). Glu-Tyr-Gly-Ca was slightly damaged in the intestinal fluid and at different temperatures, whereas it was severely damaged in the gastric fluid and acidic conditions. The results of the calcium dialysis percentage and Caco-2 cells experiments showed that Glu-Tyr-Gly-Ca possessed good calcium transport activity and bioavailability. The findings provided theoretical basis for Glu-Tyr-Gly-Ca as potential calcium supplement to improve intestinal calcium absorption.
Most microfluidic-based "sample-in-result-out" systems suffer sophisticated microfluidic production processes, high-cost chips, and expensive instruments. They cannot be used in the meat market as well as farmer's markets in rural areas. Here, we developed a hand-held microfluidic chip system for on-site meat species qualitative authentication detection which integrated a simple microneedle DNA extraction and a visual loop-mediated isothermal amplification (LAMP). The chip can be used by easily pricking meat samples, simply hand-shaking the chip, and readily available isothermal heating instead of a complicated DNA extraction process and microfluidic control device. The system demonstrates high specificity and sensitivity for selected six species of meat samples and low to 1% simulated adulteration could be detected within 60 min. Besides, the whole cost was less than 1 dollar. The integrated hand-held microfluidic detection system offers a simple, fast, low-cost "sample-in-result-out" point-of-care device which could be extended to medical diagnosis and animal/plant disease identification.
Albino tea has been receiving growing attention on the tea market due to its attractive appearance and fresh taste, mainly caused by high amino acid contents. Here, variations in the contents of five free amino acids in relation to pigment contents and tree age in two hybrid populations'Longjin 43'(♀) × 'Baijiguan'(♂) and 'Longjin 43'(♀) ×'Huangjinya'(♂) with 334 first filial generation individuals including chlorophyll-deficient and normal tea plants were investigated. The data showed that the contents of main amino acids in all filial generation gradually decreased as plant age increased. Principal component analysis indicated that the amino acid content of individual plant tended to be stable with the growth of plants. Correlation analysis clarified that several main amino acids were significantly negatively correlated with chlorophyll a, chlorophyll b and carotenoid contents. Our results showed that the accumulation of amino acids in tea plant was closely related to leaf color variation and the tree age during growing period.
T-butanol is widely used in three-phase partitioning (TPP), which is harmful to the environment. pH-switchable deep eutectic solvents (DESs) can be used as recyclable alternatives to t-butanol. This study aimed to construct DES-based TPP for extracting and purifying grape seed polysaccharides (GSP). The main influence factors were investigated in single-factor experiments. DES-1 (dodecanoic acid: octanoic acid = 1:1)-based extraction was screened, and the extraction yield reached the maximum of 98.04 mg/g under the optimal conditions. Furthermore, DES can be recycled, only suffering a small loss capacity in extraction yield after 25 cycles. Most importantly, the extractability of DES could be completely recovered after switching and regeneration. The molecular weight of obtained GSP was 60 kDa, and the main monosaccharides of GSP included mannose, glucose, galactose, and arabinose. This study provides an efficient and sustainable method for the extraction of bioactive substances.
Although the repaid development of China's apple industry heavily depends on excessive fertilizer-water-pesticide (FWP) inputs, little information is available that systematically evaluates environmental impacts, mitigation potential, and economical benefits of apple production systems in China. In this study, life cycle assessment (LCA) was conducted to elucidate environmental risks and mitigation potentials of rain-fed and irrigated apple production systems on China's Loess Plateau based on survey data from 847 farmers, and economic benefits were analyzed simultaneously. Results showed that irrigated orchards caused more severe environmental risks associated with energy depletion (ED), global warming potential (GWP) and acidification potential (AP) than those in rain-fed orchards, whereas an opposite was true for eutrophication potential (EP), human toxicity potential (HTP), aquatic toxicity potential (ATP) and soil toxicity potential (STP). ED and GWP occurred primarily in the agricultural material stage, while AP, EP, HTP, ATP, and STP occurred mostly in the orchard management stage. Optimized FWP management can markedly mitigate environmental impacts in both irrigated and rain-fed orchard systems. Synthetic fertilizer, because of production and field-associated emissions, was the greatest contributor to environmental impacts of an apple production system. An environmental pollution index (EPI) that integrated environmental categories was highest in conventional irrigated orchards (0.946), followed by conventional rainfed orchards (0.857), and optimized irrigated orchards (0.459), and the lowest EPI was in optimized rainfed orchards (0.389). Economic analysis revealed that the benefits of rainfed orchards were higher than those of irrigated orchards because of higher apple prices and lower labor costs. Optimized FWP management sharply decreased input costs, thereby substantially increasing net income in irrigated and rain-fed apple orchards. Overall, severe environmental risk and large mitigation potential co-exist in rain-fed and irrigated apple orchards on China's Loess Plateau. Integrated soil-crop-market management potentially exhibited considerable environmental and economic advantages, thereby efficiently developing high-quality apple production.
Imidacloprid, a widely used neonicotinoid insecticide, poses a significant threat to aquatic ecosystems. Behavior is a functional indicator of the net sensory, motor, and integrative processes of the nervous system and is presumed to be more sensitive in detecting toxicity. In the present study, we investigated the behavioral effects of imidacloprid at the level of environmental concentrations (1, 10 and 100 μg/L) for a constant exposure to zebrafish adults, and performed the integrated transcriptomic and metabolomic analysis to analyze the molecular mechanism underlying behavioral effects of imidacloprid. Our results show that imidacloprid exposure significantly induce behavioral disruptions characterized by anxiety, depression, and reduced physiological function including exploratory, decision, social interaction and locomotor activity. Integrated transcriptomic and metabolomic analysis indicate that the disruption of circadian rhythm, metabolic imbalance of arginine and proline, and neurotransmitter disorder are the underlying molecular mechanisms of behavioral impairment induced by imidacloprid. The "gene-metabolite-disease" network consisted by 11 metabolites and 15 genes is associated human disease Alzheimer's disease (AD) and schizophrenia. Our results confirm the behavioral impairment induced by imidacloprid at environmental concentrations for constant exposure. The identified genes and metabolites can be used not only to illustrate the underlying mechanisms, but also can be developed as biomarkers in determining the ecological risk of imidacloprid to aquatic organisms even Homo sapiens.
It is crucial to elucidate the release rate of microplastics (MPs) and phthalic acid esters (PAEs) in agricultural soil and their effects on crop productivity regarding film types and thicknesses. To address this issue, two-year landfill test was performed using 0.016 mm-thick polyethylene (PEt1) & biodegradable (BIOt1), and 0.01 mm-thin polyethylene (PEt2) & biodegradable (BIOt2) residual films as materials with no landfill as CK. Scanning electron microscopy (SEM) and infrared analyses revealed that two-year landfill caused considerable changes in physical forms and spectral peaks in BIO film, which was more pronounced in thin BIO (36.90 % weight loss). Yet, less changes were presented in the above analyzes in polyethylene (PE) films, and thick films damaged relatively less. MPs number was 86,829.11 n/kg in BIOt1 and 134,912.27 n/kg in BIOt2, equivalent to 2.55 and 3.72 times higher than in PEt1 and PEt2, respectively. This was closely associated with PAEs release, as soil PAEs concentration was substantially lower in PEt1 (17.60 g/kg) and PEt2 (21.43 g/kg) than in BIOt1 and BIOt2 (37.12 g/kg and 49.20 g/kg), respectively. Furthermore, maize productivity parameters were negatively correlated with the amount of MPs and PAEs. BIOt2 and PEt1 had the lowest and highest grain yield, respectively. BIO exhibited greater environmental risk and adverse effects on soil and crop productivity than PE film due to physical degradation and release of PAEs. Thickness-wise comparison exhibited that thin film residues had more adverse effect relative to thick film ones.
Using high-throughput quantitative PCR and next generation sequencing, the impact of land application of raw and composted gentamicin fermentation waste (GFW) on antibiotic resistance genes (ARGs) in maize seeds was studied in a three-year field trial. The raw and composted GFW changed both the bacterial community composition and the ARGs diversity in the maize seeds compared to non-amended controls and chemical fertilizer. The abundance of ARGs after raw GFW amendment was significantly higher than other treatments because of a high abundance of aadA1, qacEdeltal and aph(2')-Id-02; probably induced by gentamicin selection pressure in maize tissues. Meanwhile, the potential host of these three ARGs, pathogenic bacteria Tenacibaculum, also increased significantly in maize seeds after the application of raw GFW. But our result proved that composting could weaken the risk posed by GFW. We further reveal that the key biotic driver for shaping the ARG profiles in maize seeds is bacterial community followed by heavy metal resistance genes, and ARGs are more likely located on bacterial chromosomes. Our findings provide new insight into ARGs dispersal mechanism in maize seeds after long-term GFW application, demonstrate the potential benefits of composting the GFW to reduce risks as well as the potential efficient management method to GFW.
Discharging the tannery wastewater into the environment is a serious challenge worldwide due to the release of severe recalcitrant pollutants such as oil compounds and organic materials. The biological treatment through enzymatic hydrolysis is a cheap and eco-friendly method for eliminating fatty substances from wastewater. In this context, lipases can be utilized for bio-treatment of wastewater in multifaceted industrial applications. To overcome the limitations in removing pollutants in the effluent, we aimed to identify a novel robust stable lipase (PersiLipase1) from metagenomic data of tannery wastewater for effective bio-degradation of the oily wastewater pollution. The lipase displayed remarkable thermostability and maintained over 81 % of its activity at 60 °C.After prolonged incubation for 35 days at 60°C, the PersiLipase1 still maintained 53.9 % of its activity. The enzyme also retained over 67 % of its activity in a wide range of pH (4.0 to 9.0). In addition, PersiLipase1 demonstrated considerable tolerance toward metal ions and organic solvents (e.g., retaining >70% activity after the addition of 100 mM of chemicals). Hydrolysis of olive oil and sheep fat by this enzyme showed 100 % efficiency. Furthermore, the PersiLipase1 proved to be efficient for biotreatment of oil and grease from tannery wastewater with the hydrolysis efficiency of 90.76 % ± 0.88. These results demonstrated that the metagenome-derived PersiLipase1 from tannery wastewater has a promising potential for the biodegradation and management of oily wastewater pollution.
The Boer goat is one of the top meat breeds in modern animal husbandry and has attracted widespread attention for its unique growth performance. However, the genetic basis of muscle development in the Boer goat remains obscure. In this study, we identified specific structural variants in the Boer goat based on genome-wide selection signals and analyzed the basis of the molecular heredity of related candidate genes in muscle development. A total of 9 959 autosomal copy number variations (CNVs) were identified through selection signal analysis in 127 goat genomes. Specifically, we confirmed that the highest signal CNV (HSV) was a chromosomal arrangement containing an approximately 1.11 Mb (CHIR17: 60062304-61171840 bp) duplicated fragment inserted in reverse orientation and a 5 362 bp deleted region (CHIR17:60145940-60151302 bp) with overlapping genes (e.g., ARHGAP10, NR3C2, EDNRA, PRMT9, and TMEM184C). The homozygous duplicated HSV genotype (+/+) was found in 96% of Boer goats but was not detected in Eurasian goats and was only detected in 4% of indigenous African goats. The expression network of three candidate genes ( ARHGAP10, NR3C2, and EDNRA) regulating dose transcription was constructed by RNA sequencing. Results indicated that these genes were involved in the proliferation and differentiation of skeletal muscle satellite cells (SMSCs) and their overexpression significantly increased the expression of SAA3. The HSV of the Boer goat contributed to superior skeletal muscle growth via the dose effects of overlapping genes.
Soybean (Glycine max) is a major grain and oil crop worldwide, but low phosphorus (LP) in soil severely limits the development of soybean production. Dissecting the regulatory mechanism of the P response is crucial for improving the P use efficiency of soybean. Here, we identified a transcription factor, GmERF1 (ethylene response factor 1), that is mainly expressed in soybean root and localized in the nucleus. Its expression is induced by LP stress and differs substantially in extreme genotypes. The genomic sequences of 559 soybean accessions suggested that the allelic variation of GmERF1 has undergone artificial selection, and its haplotype is significantly related to LP tolerance. GmERF1 knockout or RNA interference resulted in significant increases in root and P uptake efficiency traits, while the overexpression of GmERF1 produced an LP-sensitive phenotype and affected the expression of six LP stress-related genes. In addition, GmERF1 directly interacted with GmWRKY6 to inhibit transcription of GmPT5 (phosphate transporter 5), GmPT7 and GmPT8, which affects plant P uptake and use efficiency under LP stress. Taken together, our results show that GmERF1 can affect root development by regulating hormone levels, thus promoting P absorption in soybean, and provide a better understanding of the role of GmERF1 in soybean P signal transduction. The favorable haplotypes from wild soybean will be conducive to the molecular breeding of high P use efficiency in soybean.
Fruit size and shape are controlled by genes expressed during the early developmental stages of the fruit. Although the function of ASYMMETRIC LEAVES 2 (AS2) in promoting leaf adaxial cell fates has been well characterized in Arabidopsis thaliana, the molecular mechanisms conferring freshy fruit development as a spatial-temporal expression gene in tomato pericarp remain unclear. In the present study, we verified the transcription of SlAS2 and SlAS2L, two homologs of AS2, in the pericarp during early fruit development. Disruption of SlAS2 or SlAS2L caused a significant decrease in pericarp thickness owing to a reduction in the number of pericarp cell layers and cell area, leading to smaller tomato fruit size, which revealed their critical roles in tomato fruit development. In addition, leaves and stamens exhibited severe morphological defects in slas2 and slas2l single mutants, as well as in the double mutants. These results demonstrated the redundant and pleiotropic functions of SlAS2 and SlAS2L in tomato fruit development. Yeast two-hybrid and split-luciferase complementation assays showed that both SlAS2 and SlAS2L physically interact with SlAS1. Molecular analyses further indicated that SlAS2 and SlAS2L regulate various downstream genes in leaf and fruit development, and that some genes participating in the regulation of cell division and cell differentiation in the tomato pericarp are affected by these genes. Our findings demonstrate that SlAS2 and SlAS2L are vital transcription factors required for tomato fruit development.
Background Health inequality poses a challenge to improving the quality of life of older adults as well as the service system. The literature rarely explores the moderating role of medical services accessibility in the association between socioeconomic deprivation and health inequality. Objective This study examines the socioeconomic deprivation and medical services accessibility associated with health inequality among older Chinese adults, which will contribute to the medical policy reform. Methods Using data from the 2011, 2014, and 2018 waves of the Chinese Longitudinal Healthy Longevity Survey (CLHLS), we analyse 14,232 older adults. This paper uses a concentration index (CI) to measure the income-related health inequality among the target population and employs a recentered influence function–concentration index–ordinary least squares (RIF-CI-OLS) model to empirically analyse the correlation between socioeconomic deprivation and health inequality among older Chinese adults. Based on the correlation analysis, we discuss the moderating effect of medical services accessibility. Results We find that health inequality exists among older Chinese adults and that the relative deprivation in socioeconomic status (SES) is significantly associated with health inequality (β∈ [0.1109, 0.1909], P < 0.01). The correlation between socioeconomic deprivation and health inequality is moderated by medical services accessibility, which means that an increase in medical services accessibility can weaken the correlation between socioeconomic deprivation and health inequality. Conclusion China needs an in-depth reform of its medical services accessibility system to promote the equitable distribution of medical services resources, strengthen medical costs and quality management, and ultimately mitigate the SES reason for health inequality among older Chinese adults.
Birds are among the most colourful terrestrial vertebrates, with various plumage colours and patterns. We conducted a genome-wide association study (GWAS) on an intercross F2 population of Pekin ducks and mallards (n=722) and identified a 1.57 Mb genetic region (Chr11: 20,176,480-21,750,101 bp) related to duck melanism. Fine mapping by linkage disequilibrium (LD) and Fst analysis narrowed the final candidate region to a region of 22,500 bp (Chr11: 20,677,500-20,700,000 bp) including three coding genes, TCF25, MC1R, and TUBB3. Combined with transcriptome and qRT-PCR analysis, MC1R was identified as the unique genetic locus responsible for black plumage in ducks, and it was significantly more highly expressed in the feather bulbs of black ducks. We also identified 52 G>A (Chr11: 20,696,354 G>A) and 376 G>A (Chr11: 20,696,678 G>A) mutations in the MC1R coding region that have been widely studied in ducks. In addition, structural variations (SVs) were screened by nanopore sequencing, and no significant SV was found to be associated with the duck black plumage trait. However, we identified 4 novel SNPs in the MC1R regulator region (Chr11: 20,678,412 G>A, Chr11: 20,679,236 G>A, Chr11: 20,692,496 A>G, and Chr11: 20,692,791 A>G) that had a strong association with the black plumage phenotype of ducks and combined with potential changes in transcription binding affinities. The luciferase reporter gene assay demonstrated that Chr11: 20,678,412 G>A and Chr11: 20,679,236 G>A led to significant promoter activity changes. Our research emphasizes the importance of MC1R regulatory region mutation in determining the duck black plumage phenotype, and these results expand our understanding of the genetic mechanism underlying duck plumage colour.
Accurate monitoring of soil moisture and the development of timely interventions are important to reduce the social and economic losses caused by drought. Compared to short-wave infrared (SWIR) and thermal infrared (TIR), near-infrared (NIR) and visible bands are widely used in almost all optical satellites. Drought monitoring using NIR and visible bands is therefore more relevant for optical satellites. Among the visible bands, the red band is often used in combination with the NIR band for drought monitoring due to its sensitivity to vegetation. However, current drought indexes based on the NIR and the red band applied to areas of high vegetation suffer from insufficient accuracy or tedious calculations. In this study, the ratio drought index (RDI) was developed after constructing a new feature space by examining the spectral properties of soil and vegetation at different water levels in the NIR and red bands. The accuracy of soil moisture inversion under two types of bare soil and vegetation was evaluated using in situ data from Tai’an City, Shandong Province. The perpendicular drought index (PDI) and modified perpendicular drought index (MPDI) were also used to compare for the RDI. The results showed that the RDI correlation coefficients (R²) of 0.653 and 0.641 were better than the MPDI of 0.616 and 0.594 and the PDI of 0.602 and 0.546 for soil moisture measurements from vegetation and bare soil cover. The RDI attenuates the effect of vegetation on soil moisture inversion, as its root mean square error (RMSE) in vegetated areas is lower than that of the PDI and MPDI. The RDI calculation can be used as a theoretical guide for large-scale soil moisture estimation because it is fast, accurate and does not require additional quantitative remote sensing inversion factors.
Background Current solid-phase reversible immobilization (SPRI) beads technology is widely used in molecular biology due to its convenience for DNA manipulation. However, the high performance commercial SPRI beads have no price advantage over our method. Furthermore, the use of commercially available SPRI beads standards does not provide the flexibility required for a number of specific nucleic acid handling scenarios. Results We report an efficient DNA purification strategy by combining home-made beads-suspension buffer with SPRI beads. The method tests the critical concentrations of polyethylene glycol (PEG) 8000 and beads to maximise recovery. And the composition of the SPRI beads DNA purification system (SDPS) was determined at 20% PEG 8000, 2 M NaCl and 16.3 mM MgCl2, and 1.25 mg/ml beads (1/8th original concentration). Then, we tested the DNA recovery of the SDPS, and the result showed that it was comparable to the control (AMPure XP beads). In the study, we have also developed an adjustment SPRI beads DNA purification system (ASDPS), the volume of ASDPS per reaction is 0.6× reaction volume (beads/samples). The performance of ASDPS is similar to SDPS and the control. But the cost of our methods is only about 1/24th of the control. To further assess its performance, we prepare the DNA-seq libraries to evaluate the yield, library quality, capture efficiency and consistency. We have compared all these results with the performance of the control and confirmed its efficiency. Conclusion We have proposed an alternative DNA purification approach with great flexibility, allowing researchers to manipulate DNA in different conditions. And ultimately, its application will benefit molecular biology research in the future.
Background Canine distemper virus (CDV) is one of the most contagious and lethal viruses known to the Canidae, with a very broad and expanding host range. Autophagy serves as a fundamental stabilizing response against pathogens, but some viruses have been able to evade or exploit it for their replication. However, the effect of autophagy mechanisms on CDV infection is still unclear. Results In the present study, autophagy was induced in CDV-infected Vero cells as demonstrated by elevated LC3-II levels and aggregation of green fluorescent protein (GFP)-LC3 spots. Furthermore, CDV promoted the complete autophagic process, which could be determined by the degradation of p62, co-localization of LC3 with lysosomes, GFP degradation, and accumulation of LC3-II and p62 due to the lysosomal protease inhibitor E64d. In addition, the use of Rapamycin to promote autophagy promoted CDV replication, and the inhibition of autophagy by Wortmannin, Chloroquine and siRNA-ATG5 inhibited CDV replication, revealing that CDV-induced autophagy facilitated virus replication. We also found that UV-inactivated CDV still induced autophagy, and that nucleocapsid (N) protein was able to induce complete autophagy in an mTOR-dependent manner. Conclusions This study for the first time revealed that CDV N protein induced complete autophagy to facilitate viral replication.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
3,160 members
yanzhu zhu
  • Institute of Special Economic Animal and Plant Science
Peilong Wang
  • Institute of Quality Standards and Testing Technology for Agricultural Products
Kamran Shehzad Bajwa
  • Biotechnology Research Institute (BRI)
Shangjin Cui
  • Department of Animal Infectious Diseases
Jiang Xian-Ren
  • Institute of Feed Research (IFR)
No.12 Zhongguancun South St., 100081, Beijing, China
Head of institution
Huajun Tang
+ 86 10 82106755
+ 86 10 62174060