Centre for Genomic Regulation
  • Barcelona, Catalonia, Spain
Recent publications
Social insect reproductives and non‐reproductives represent ideal models with which to understand the expression and regulation of alternative phenotypes. Most research in this area has focused on the developmental regulation of reproductive phenotypes in obligately social taxa such as honey bees, while relatively few studies have addressed the molecular correlates of reproductive differentiation in species in which the division of reproductive labour is established only in plastic dominance hierarchies. To address this knowledge gap, we generate the first genome for any stenogastrine wasp and analyse brain transcriptomic data for non‐reproductives and reproductives of the facultatively social species Liostenogaster flavolineata , a representative of one of the simplest forms of social living. By experimentally manipulating the reproductive ‘queues’ exhibited by social colonies of this species, we show that reproductive division of labour in this species is associated with transcriptomic signatures that are more subtle and variable than those observed in social taxa in which colony living has become obligate; that variation in gene expression among non‐reproductives reflects their investment into foraging effort more than their social rank; and that genes associated with reproductive division of labour overlap to some extent with those underlying division of labour in the separate polistine origin of wasp sociality but only explain a small portion of overall variation in this trait. These results indicate that broad patterns of within‐colony transcriptomic differentiation in this species are similar to those in Polistinae but offer little support for the existence of a strongly conserved ‘toolkit’ for sociality.
Chromosome segregation relies on the correct assembly of a bipolar spindle. Spindle pole self-organization requires dynein-dependent microtubule transport along other microtubules. However, during M-phase RanGTP triggers microtubule nucleation and branching generating polarized arrays with non-astral organization in which microtubule minus ends are linked to the sides of other microtubules. This raises the question of how branched-microtubule nucleation and dynein-mediated transport cooperate to organize the spindle poles. Here, we used RanGTP-dependent microtubule aster formation in Xenopus laevis egg extract to study the interplay between these two seemingly conflicting organizing principles. Using temporally controlled perturbations of microtubule nucleation and dynein activity, we found that branched microtubules are not static but instead dynamically redistribute over time as poles self-organize. Our experimental data together with computer simulations suggest a model where dynein together with dynactin and NuMA directly pulls and move branched microtubule minus ends towards other microtubule minus ends.
Individuals with Down syndrome (DS) have a higher prevalence of obesity compared to the general population. Conventionally, this has been attributed to endocrine issues and lack of exercise. However, deficits in neural reward responses and dopaminergic disturbances in DS may be contributing factors. To investigate this, we focused on a mouse model (Ts65Dn) bearing some triplicated genes homologous to trisomy 21. Through detailed meal pattern analysis in male Ts65Dn mice, we observed an increased preference for energy-dense food, pointing towards a potential “hedonic” overeating behavior. Moreover, trisomic mice exhibited higher scores in compulsivity and inflexibility tests when limited access to energy-dense food and quinine hydrochloride adulteration were introduced, compared to euploid controls. Interestingly, when we activated prelimbic-to-nucleus accumbens projections in Ts65Dn male mice using a chemogenetic approach, impulsive and compulsive behaviors significantly decreased, shedding light on a promising intervention avenue. Our findings uncover a novel mechanism behind the vulnerability to overeating and offer potential new pathways for tackling obesity through innovative interventions.
The genome is organized in functional compartments and structural domains at the sub-megabase scale. How within these domains interactions between numerous cis-acting enhancers and promoters regulate transcription remains an open question. Here, we determined chromatin folding and composition over several hundred kb around estrogen-responsive genes in human breast cancer cell lines after hormone stimulation. Modeling of 5C data at 1.8 kb resolution was combined with quantitative 3D analysis of multicolor FISH measurements at 100 nm resolution and integrated with ChIP-seq data on transcription factor binding and histone modifications. We found that rapid estradiol induction of the progesterone gene expression occurs in the context of preexisting, cell type-specific chromosomal architectures encompassing the 90 kb progesterone gene coding region and an enhancer-spiked 5′ 300 kb upstream genomic region. In response to estradiol, interactions between estrogen receptor α (ERα) bound regulatory elements are reinforced. Whereas initial enhancer–gene contacts coincide with RNA Pol 2 binding and transcription initiation, sustained hormone stimulation promotes ERα accumulation creating a regulatory hub stimulating transcript synthesis. In addition to implications for estrogen receptor signaling, we uncover that preestablished chromatin architectures efficiently regulate gene expression upon stimulation without the need for de novo extensive rewiring of long-range chromatin interactions.
Identifying genes linked to extreme phenotypes in humans has the potential to highlight biological processes not shared with all other mammals. Here, we report the identification of homozygous loss-of-function variants in the primate-specific gene ZNF808 as a cause of pancreatic agenesis. ZNF808 is a member of the KRAB zinc finger protein family, a large and rapidly evolving group of epigenetic silencers which target transposable elements. We show that loss of ZNF808 in vitro results in aberrant activation of regulatory potential contained in the primate-specific transposable elements it represses during early pancreas development. This leads to inappropriate specification of cell fate with induction of genes associated with liver identity. Our results highlight the essential role of ZNF808 in pancreatic development in humans and the contribution of primate-specific regions of the human genome to congenital developmental disease.
Background Wharton’s Jelly (WJ) Mesenchymal Stromal Cells (MSC) have emerged as an attractive allogeneic therapy for a number of indications, except for bone-related conditions requiring new tissue formation. This may be explained by the apparent recalcitrance of MSC,WJ to differentiate into the osteogenic lineage in vitro, as opposed to permissive bone marrow (BM)-derived MSCs (MSC,BM) that readily commit to bone cells. Consequently, the actual osteogenic in vivo capacity of MSC,WJ is under discussion. Methods We investigated how physiological bone environments affect the osteogenic commitment of recalcitrant MSCs in vitro and in vivo. To this end, MSC of BM and WJ origin were co-cultured and induced for synchronous osteogenic differentiation in vitro using transwells. For in vivo experiments, immunodeficient mice were injected intratibially with a single dose of human MSC and bone formation was evaluated after six weeks. Results Co-culture of MSC,BM and MSC,WJ resulted in efficient osteogenesis in both cell types after three weeks. However, MSC,WJ failed to commit to bone cells in the absence of MSC,BM’s osteogenic stimuli. In vivo studies showed successful bone formation within the medullar cavity of tibias in 62.5% of mice treated with MSC, WJ. By contrast, new formed trabeculae were only observed in 25% of MSC,BM-treated mice. Immunohistochemical staining of human COXIV revealed the persistence of the infused cells at the site of injection. Additionally, cells of human origin were also identified in the brain, heart, spleen, kidney and gonads in some animals treated with engineered MSC,WJ (eMSC,WJ). Importantly, no macroscopic histopathological alterations, ectopic bone formation or any other adverse events were detected in MSC-treated mice. Conclusions Our findings demonstrate that in physiological bone microenvironment, osteogenic commitment of MSC,WJ is comparable to that of MSC,BM, and support the use of off-the-shelf allogeneic MSC,WJ products in bone repair and bone regeneration applications.
MAF amplification increases the risk of breast cancer (BCa) metastasis through mechanisms that are still poorly understood yet have important clinical implications. Oestrogen-receptor-positive (ER⁺) BCa requires oestrogen for both growth and metastasis, albeit by ill-known mechanisms. Here we integrate proteomics, transcriptomics, epigenomics, chromatin accessibility and functional assays from human and syngeneic mouse BCa models to show that MAF directly interacts with oestrogen receptor alpha (ERα), thereby promoting a unique chromatin landscape that favours metastatic spread. We identify metastasis-promoting genes that are de novo licensed following oestrogen exposure in a MAF-dependent manner. The histone demethylase KDM1A is key to the epigenomic remodelling that facilitates the expression of the pro-metastatic MAF/oestrogen-driven gene expression program, and loss of KDM1A activity prevents this metastasis. We have thus determined that the molecular basis underlying MAF/oestrogen-mediated metastasis requires genetic, epigenetic and hormone signals from the systemic environment, which influence the ability of BCa cells to metastasize.
Triple‐negative breast cancer (TNBC) often develops resistance to single‐agent treatment, which can be circumvented using targeted combinatorial approaches. Here, we demonstrate that the simultaneous inhibition of LOXL2 and BRD4 synergistically limits TNBC proliferation in vitro and in vivo . Mechanistically, LOXL2 interacts in the nucleus with the short isoform of BRD4 (BRD4S), MED1, and the cell cycle transcriptional regulator B‐MyB. These interactions sustain the formation of BRD4 and MED1 nuclear transcriptional foci and control cell cycle progression at the gene expression level. The pharmacological co‐inhibition of LOXL2 and BRD4 reduces BRD4 nuclear foci, BRD4‐MED1 colocalization, and the transcription of cell cycle genes, thus suppressing TNBC cell proliferation. Targeting the interaction between BRD4S and LOXL2 could be a starting point for the development of new anticancer strategies for the treatment of TNBC.
Rare diseases (RD) have a prevalence of not more than 1/2000 persons in the European population, and are characterised by the difficulty experienced in obtaining a correct and timely diagnosis. According to Orphanet, 72.5% of RD have a genetic origin although 35% of them do not yet have an identified causative gene. A significant proportion of patients suspected to have a genetic RD receive an inconclusive exome/genome sequencing. Working towards the International Rare Diseases Research Consortium (IRDiRC)’s goal for 2027 to ensure that all people living with a RD receive a diagnosis within one year of coming to medical attention, the Solve-RD project aims to identify the molecular causes underlying undiagnosed RD. As part of this strategy, we developed a phenotypic similarity-based variant prioritization methodology comparing submitted cases with other submitted cases and with known RD in Orphanet. Three complementary approaches based on phenotypic similarity calculations using the Human Phenotype Ontology (HPO), the Orphanet Rare Diseases Ontology (ORDO) and the HPO-ORDO Ontological Module (HOOM) were developed; genomic data reanalysis was performed by the RD-Connect Genome-Phenome Analysis Platform (GPAP). The methodology was tested in 4 exemplary cases discussed with experts from European Reference Networks. Variants of interest (pathogenic or likely pathogenic) were detected in 8.8% of the 725 cases clustered by similarity calculations. Diagnostic hypotheses were validated in 42.1% of them and needed further exploration in another 10.9%. Based on the promising results, we are devising an automated standardized phenotypic-based re-analysis pipeline to be applied to the entire unsolved cases cohort.
Somatic single-nucleotide variants (SNVs) occur every time a cell divides, appearing even in healthy tissues at low frequencies. These mutations may accumulate as neutral variants during aging, or eventually, promote the development of neoplasia. Here, we present the SP-ddPCR, a droplet digital PCR (ddPCR) based approach that utilizes customized SuperSelective primers aiming at quantifying the proportion of rare SNVs. For that purpose, we selected five potentially pathogenic variants identified by whole-exome sequencing (WES) occurring at low variant allele frequency (VAF) in at-risk colon healthy mucosa of patients diagnosed with colorectal cancer or advanced adenoma. Additionally, two APC SNVs detected in two cancer lesions were added to the study for WES-VAF validation. SuperSelective primers were designed to quantify SNVs at low VAFs both in silico and in clinical samples. In addition to the two APC SNVs in colonic lesions, SP-ddPCR confirmed the presence of three out of five selected SNVs in the normal colonic mucosa with allelic frequencies ≤ 5%. Moreover, SP-ddPCR showed the presence of two potentially pathogenic variants in the distal normal mucosa of patients with colorectal carcinoma. In summary, SP-ddPCR offers a rapid and feasible methodology to validate next-generation sequencing data and accurately quantify rare SNVs, thus providing a potential tool for diagnosis and stratification of at-risk patients based on their mutational profiling.
KMT2A -rearranged (KMT2A-R) is an aggressive and chemo-refractory acute leukemia which mostly affects children. Transcriptomics-based characterization and chemical interrogation identified kinases as key drivers of survival and drug resistance in KMT2A -R leukemia. In contrast, the contribution and regulation of phosphatases is unknown. In this study we uncover the essential role and underlying mechanisms of SET, the endogenous inhibitor of Ser/Thr phosphatase PP2A, in KMT2A -R-leukemia. Investigation of SET expression in acute myeloid leukemia (AML) samples demonstrated that SET is overexpressed, and elevated expression of SET is correlated with poor prognosis and with the expression of MEIS and HOXA genes in AML patients. Silencing SET specifically abolished the clonogenic ability of KMT2A -R leukemic cells and the transcription of KMT2A targets genes HOXA9 and HOXA10 . Subsequent mechanistic investigations showed that SET interacts with both KMT2A wild type and fusion proteins, and it is recruited to the HOXA10 promoter. Pharmacological inhibition of SET by FTY720 disrupted SET-PP2A interaction leading to cell cycle arrest and increased sensitivity to chemotherapy in KMT2A -R-leukemic models. Phospho-proteomic analyses revealed that FTY720 reduced the activity of kinases regulated by PP2A, including ERK1, GSK3β, AURB and PLK1 and led to suppression of MYC, supporting the hypothesis of a feedback loop among PP2A, AURB, PLK1, MYC, and SET. Our findings illustrate that SET is a novel player in KMT2A -R leukemia and they provide evidence that SET antagonism could serve as a novel strategy to treat this aggressive leukemia.
In COVID‐19, hyperinflammatory and dysregulated immune responses contribute to severity. Patients with pre‐existing autoimmune conditions can therefore be at increased risk of severe COVID‐19 and/or associated sequelae, yet SARS‐CoV‐2 infection in this group has been little studied. Here, we performed single‐cell analysis of peripheral blood mononuclear cells from patients with three major autoimmune diseases (rheumatoid arthritis, psoriasis, or multiple sclerosis) during SARS‐CoV‐2 infection. We observed compositional differences between the autoimmune disease groups coupled with altered patterns of gene expression, transcription factor activity, and cell–cell communication that substantially shape the immune response under SARS‐CoV‐2 infection. While enrichment of HLA‐DRlow CD14+ monocytes was observed in all three autoimmune disease groups, type‐I interferon signaling as well as inflammatory T cell and monocyte responses varied widely between the three groups of patients. Our results reveal disturbed immune responses to SARS‐CoV‐2 in patients with pre‐existing autoimmunity, highlighting important considerations for disease treatment and follow‐up. This article is protected by copyright. All rights reserved
The increasing availability of multidimensional phenotypic data in large cohorts of genotyped individuals requires efficient methods to identify genetic effects on multiple traits. Permutational multivariate analysis of variance (PERMANOVA) offers a powerful non-parametric approach. However, it relies on permutations to assess significance, which hinders the analysis of large datasets. Here, we derive the limiting null distribution of the PERMANOVA test statistic, providing a framework for the fast computation of asymptotic p values. Our asymptotic test presents controlled type I error and high power, often outperforming parametric approaches. We illustrate its applicability in the context of QTL mapping and GWAS. Supplementary information The online version contains supplementary material available at 10.1186/s13059-023-03076-8.
Embryonic stem cell (ESC) derivation from single blastomeres of 8-cell mouse embryos results in lower derivation rates than that from whole blastocysts, raising a biological question about the developmental potential of sister blastomeres. We aimed to assess the ability of 8-cell blastomeres to produce epiblast cells and ESC lines after isolation, and the properties of the resulting lines. Our results revealed unequal competence among sister blastomeres to produce ESC lines. At least half of the blastomeres possess a lower potential to generate ESCs, although culture conditions and blastomeres plasticity can redirect their non-pluripotent fate towards the epiblast lineage, allowing us to generate up to seven lines from the same embryo. Lines originated from the same embryo segregated into two groups according to their transcriptional signatures. While the expression of genes related to pluripotency and development was higher in one group, no differences were found in their trilineage differentiation ability. These results may help to improve our understanding of the ESC derivation process from single blastomeres and cell fate determination in the preimplantation mouse embryos.
Mechanisms that underlie homeostatic plasticity have been extensively investigated at single-cell levels in animal models, but are less well understood at the network level. Here, we used microelectrode arrays to characterize neuronal networks following induction of homeostatic plasticity in human induced pluripotent stem cell (hiPSC)-derived glutamatergic neurons co-cultured with rat astrocytes. Chronic suppression of neuronal activity through tetrodotoxin (TTX) elicited a time-dependent network re-arrangement. Increased expression of AMPA receptors and the elongation of axon initial segments were associated with increased network excitability following TTX treatment. Transcriptomic profiling of TTX-treated neurons revealed up-regulated genes related to extracellular matrix organization, while down-regulated genes related to cell communication; also astrocytic gene expression was found altered. Overall, our study shows that hiPSC-derived neuronal networks provide a reliable in vitro platform to measure and characterize homeostatic plasticity at network and single-cell levels; this platform can be extended to investigate altered homeostatic plasticity in brain disorders.
Background Dominance and other non-additive genetic effects arise from the interaction between alleles, and historically these phenomena play a major role in quantitative genetics. However, most genome-wide association studies (GWAS) assume alleles act additively. Results We systematically investigate both dominance—here representing any non-additive within-locus interaction—and additivity across 574 physiological and gene expression traits in three mammalian stocks: F2 intercross pigs, rat heterogeneous stock, and mice heterogeneous stock. Dominance accounts for about one quarter of heritable variance across all physiological traits in all species. Hematological and immunological traits exhibit the highest dominance variance, possibly reflecting balancing selection in response to pathogens. Although most quantitative trait loci (QTLs) are detectable as additive QTLs, we identify 154, 64, and 62 novel dominance QTLs in pigs, rats, and mice respectively that are undetectable as additive QTLs. Similarly, even though most cis-acting expression QTLs are additive, gene expression exhibits a large fraction of dominance variance, and trans-acting eQTLs are enriched for dominance. Genes causal for dominance physiological QTLs are less likely to be physically linked to their QTLs but instead act via trans-acting dominance eQTLs. In addition, thousands of eQTLs are associated with alternatively spliced isoforms with complex additive and dominant architectures in heterogeneous stock rats, suggesting a possible mechanism for dominance. Conclusions Although heritability is predominantly additive, many mammalian genetic effects are dominant and likely arise through distinct mechanisms. It is therefore advantageous to consider both additive and dominance effects in GWAS to improve power and uncover causality.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
354 members
Bernhard Payer
  • Gene Regulation, Stem Cells and Cancer
Sebastian Paul Maurer
  • Cell and Developmental Biology
Pedro Vizan
  • Gene Regulation, Stem Cells and Cancer
Ester Saus
  • Bioinformatics and Genomics
Information
Address
C/Dr. Aiguader,88, 08003, Barcelona, Catalonia, Spain
Head of institution
Luis Serrano
Website
www.crg.es
Phone
+34 93 316 01 00
Fax
+34 93 316 00 99