Atomic Energy and Alternative Energies Commission
Recent publications
Microplastics provide a persistent substrate that can facilitate microbial transport across ecosystems. Since most marine plastic debris originates from land and reaches the ocean through rivers, the potential dispersal of freshwater bacteria into the sea represents a significant concern. To address this question, we explored the plastisphere on microplastic debris (MPs) and on pristine microplastics (pMPs) as well as the bacteria living in surrounding waters, along the river-sea continuum in nine major European rivers sampled during the 7 months of the Tara Microplastics mission. In both marine and riverine waters, we found a clear niche partitioning among MPs and pMPs plastispheres when compared to the bacteria living in the surrounding waters. Across this large dataset, we found that bacterial community structure varied along the river salinity gradient, with plastisphere communities exhibiting almost complete segregation between freshwater and marine ecosystems. We also described for the first time a virulent human pathogenic bacterium (Shewanella putrefaciens), capable of infecting human intestinal epithelial cells, detected exclusively on MPs in riverine environments. Our findings indicate that salinity is the main driver of plastisphere communities along the river-to-sea continuum, helping to mitigate the risk of pathogens transfer between freshwater and marine systems. Graphical Abstract
This article describes the synthesis of a difluorinated CinNapht derivative in the 4′ and 5′ positions allowing the easy access to two new families of fluorophores by late‐stage functionalization using SNAr. The first one comprises derivatives incorporating hindered aromatic amines in the 4′ and 5′ positions, which show red‐emission in apolar solvents. The second one is obtained through the use of dinucleophiles. Among them, Tetrahydroquinoxaline (THQ) and tetrahydrobenzodiazepine (THB) compounds show strongly redshifted emission. The photophysical properties of all the fluorophores in these two families are studied and rationalized by DFT and TDDFT calculations. The most promising compounds have been used to image living cells by confocal microscopy.
Epithelial–mesenchymal transition (EMT) involves profound changes in cell morphology, driven by transcriptional and epigenetic reprogramming. However, evidence suggests that translation and ribosome composition also play key roles in establishing pathophysiological phenotypes. Using genome-wide analyses, we reported significant rearrangement of the translational landscape and machinery during EMT. Specifically, a cell line overexpressing the EMT transcription factor ZEB1 displayed alterations in translational reprogramming and fidelity. Furthermore, using riboproteomics, we unveiled an increased level of the ribosomal protein RPL36A in mesenchymal ribosomes, indicating precise tuning of ribosome composition. Remarkably, RPL36A overexpression alone was sufficient to trigger the acquisition of mesenchymal features, including a switch in the molecular pattern, cell morphology, and behavior, demonstrating its pivotal role in EMT. These findings underline the importance of translational reprogramming and fine-tuning of ribosome composition in EMT.
Correction for ‘Perylene-derivative singlet exciton fission in water solution’ by Chloe Magne et al., Chem. Sci., 2024, 15, 17831–17842, https://doi.org/10.1039/D4SC04732J.
Several Old World and New World Mammarenavirus are responsible for hemorrhagic fever in humans. These enveloped viruses have a bi-segmented ambisense RNA genome that encodes four proteins. All Mammarenavirus identified to date share a common dependency on myristoylation: the addition of the C14 myristic acid on the N-terminal G2 residue on two of their proteins. The myristoylation of the Z matrix protein is required for viral particle budding, while the myristoylation of the signal peptide to the envelope glycoproteins is important for the entry mechanism. Using Mopeia virus as a model, we characterized the interaction of the Z matrix protein with the N-Myristoyltransferases (NMT) 1 and 2, the two enzymes responsible for myristoylation in mammals. While both enzymes were capable to interact with Z, we showed that only NMT1 was important for the production of viral progeny, the endogenous expression of NMT2 being insufficient to make up for NMT1 in its absence. Using the high affinity inhibitors of NMTs, IMP1088 and DDD85646, we demonstrated a strong, dose dependent and specific inhibition at the nanomolar range for all Mammarenavirus tested, including the highly pathogenic Lassa, Machupo, Junin and Lujo viruses. Mechanistically, IMP1088 and DDD85646 blocked the interaction between Z and both NMTs, preventing myristoylation and further viral particle formation, egress and spread. Unexpectedly, we found that the matrix protein devoid of myristate, despite being fully translated, did not accumulate as the other viral proteins in infected cells but was instead degraded in a proteasome- and autophagy-independent manner. These molecules represent a new broad-spectrum class of inhibitors against Mammarenavirus .
A safe and efficient lithium‐ion battery requires including an additive in the electrolyte. Among the additives used, vinylene carbonate (VC) is particularly interesting, because it leads to the formation of a stable and protective solid electrolyte interphase (SEI) on the negative electrode. However, the reduction behavior of VC, resulting in polymer formation, is complex, and many questions remain as to the corresponding reaction mechanisms. In particular, in conventional battery studies, it is not possible to observe the transient species formed during reduction. Using picosecond pulsed radiolysis coupled with theoretical chemistry calculations, we showed that, once formed, the anion radical VC·− can undergo ring opening in a few nanoseconds or form (VC)2·−. Within 100 ns, each of these anions then leads to the formation of (VC)(C3H2O3·−). This latter species starts oligomerizing. Eventually, a polymer is formed. Although it mainly consists of poly(VC) units, other chemical functions, such as alkyl groups, are also present, which highlights the role played by water, even in trace amounts. Lastly, we propose a scheme of the reaction mechanisms involved in VC reduction, leading to its polymerization. Clearly, the polymer formed from VC at the SEI of lithium‐ion batteries has a complex structure.
Fast, accurate, and affordable bacterial identification methods are paramount for the timely treatment of infections, especially in resource-limited settings (RLS). However, today, only 1.3% of the sub-Saharan African diagnostic laboratories are performing clinical bacteriology. To improve this, diagnostic tools for RLS should prioritize simplicity, affordability, and ease of maintenance, as opposed to the costly equipment utilized for bacterial identification in high-income countries, such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In this work, we present a new high-throughput approach based on a simple wide-field (864 mm²) lensless imaging system allowing for the acquisition of a large portion of a Petri dish coupled with a supervised deep learning algorithm for identification at the bacterial colony scale. This wide-field imaging system is particularly well suited to RLS since it includes neither moving mechanical parts nor optics. We validated this approach through the acquisition and the subsequent analysis of a dataset comprising 252 clinical isolates from five species, encompassing some of the most prevalent pathogens. The resulting optical morphotypes exhibited intra- and interspecies variability, a scenario considerably more akin to real-world clinical practice than the one achievable by solely concentrating on reference strains. Despite this variability, high identification performance was achieved with a correct species identification rate of 91.7%. These results open up some new prospects for identification in RLS. We released both the acquired dataset and the trained identification algorithm in publicly available repositories.
Uranyl and nickel(II) nitrates have been reacted with cis‐1,2‐cyclohexanedicarboxylic (H2chdc) and isonicotinic (Hint) acids under solvo‐hydrothermal conditions, giving the heterometallic, mixed‐ligand complex [(UO2)2Ni(chdc)2(int)2]⋅CH3CN (1). The uranyl cation is bound to carboxylate groups of both ligands while NiII is attached to two carboxylate and two nitrogen donors, with two strong additional interactions with uranyl oxo groups giving a nearly regular octahedral environment. The short Ni–O(oxo) bond length of 2.114(3) Å amounts to 67% of the sum of van der Waals radii. The trimetallic (UO2)2Ni6+ clusters thus formed are assembled by chdc2– ligands into linear chains which are further bridged by int– links to give a triperiodic framework with the dia topology, in which small channels encompass two rows of acetonitrile solvent molecules. Complex 1 does not display uranyl luminescence under excitation in the solid state.
Original covalent probes with an N‐acyl‐N‐alkyl sulfonamide cleavable linker were developed to target a broad set of human Matrix Metalloproteases (MMPs). The electrophilicity of this cleavable linker was modulated to improve the selectivity of the probes as well as reduce their unspecific reactivity in complex biological matrices. We first demonstrated that targeting the S3 subsite of MMPs enables access to broad‐spectrum affinity‐based probes that exclusively react with the active version of these proteases. The probes were further assessed in proteomes of varying complexity, where human MMP‐13 was artificially introduced at known concentration and the resulting labeled MMP was imaged by in‐gel fluorescence imaging. We showed that the less reactive probe was still able to covalently modify MMP‐13 while exhibiting reduced off‐target unspecific reactivity. This study clearly demonstrated the importance of finely controlling the reactivity of the NASA warhead to improve the selectivity of covalent probes in complex biological systems.
The integration of Renewable Energy Sources (RES) into the power grid is limited by two inherent characteristics: intermittency and low inertia. These characteristics negatively impact system stability, particularly in terms of frequency stability. If the penetration of RES in a power system exceeds a certain threshold, the frequency stability of the system is compromised. This paper proposes and validates the effectiveness of combining Fault Ride Through (FRT) with Battery Energy Storage Systems (BESS) to address these challenges in various scenarios. Subsequently, the research employs the Particle Swarm Optimization (PSO) algorithm to determine the optimal parameters of both the BESS and Power System Stabilizer (PSS) for all the Synchronous Generators in a microgrid, achieving improved frequency stability. The results reveal the combined application of these two methods proves highly effective in enhancing system stability, even when RES account for 100% of the system's generation capacity.
A semi‐heterogeneous photocatalytic system was assembled through encapsulation of a lipophilic porphyrin in stabilized polydiacetylene micelles. The colloidal nanohybrid catalyst was valorized in the aerobic photo‐oxidation of sulfides to the corresponding sulfoxides. Micelles behaved as nanoreactors by creating a favorable environment for the photo‐activation of oxygen nearby thioethers and subsequent sulfoxidation. The process operates selectively under visible light and air atmosphere, with low catalytic loading and in water as the only solvent.
Hydroboranes are versatile reagents in synthetic chemistry, but their synthesis relies on energy‐intensive processes. Herein, we report a new method for the preparation of hydroboranes from hydrogen and the corresponding haloboranes. Triethylamine (NEt3) form with dialkylchloroboranes a Frustrated Lewis Pair (FLP) able to split H2 and afford the desired hydroborane with ammonium salts. Unreactive haloboranes were unlocked using a catalytic amount of Cy2BCl, enabling the synthesis of commonly used hydroboranes such as pinacolborane or catecholborane. The mechanisms of these reactions have been examined by DFT studies, highlighting the importance of the base selection. Finally, the system‘s robustness has been evaluated in one‐pot B−Cl hydrogenolysis/hydroboration reactions of C=C unsaturated bonds.
Background Treatment resistance is a major challenge in psychiatric disorders. Early detection of potential future resistance would improve prognosis by reducing the delay to appropriate treatment adjustment and recovery. Here, we sought to determine whether neurodevelopmental markers can predict therapeutic response. Methods Healthy controls (N = 236), patients with schizophrenia (N = 280) or bipolar disorder (N = 78) with a known therapeutic outcome, were retrospectively included. Age, sex, education, early developmental abnormalities (obstetric complications, height, weight, and head circumference at birth, hyperactivity, dyslexia, epilepsy, enuresis, encopresis), neurological soft signs (NSS), and ages at first subjective impairment, clinical symptoms, treatment, and hospitalization, were recorded. A supervised algorithm leveraged NSS and age at first clinical signs to classify between resistance and response in schizophrenia. ResultsDevelopmental abnormalities were more frequent in schizophrenia and bipolar disorder than in controls. NSS significantly differed between controls, responsive, and resistant participants with schizophrenia (5.5 ± 3.0, 7.0 ± 4.0, 15.0 ± 6.0 respectively, p = 3 × 10−10) and bipolar disorder (5.5 ± 3.0, 8.3 ± 3.0, 12.5 ± 6.0 respectively, p < 1 × 10−10). In schizophrenia, but not in bipolar disorder, age at first subjective impairment was three years lower, and age at first clinical signs two years lower, in resistant than responsive subjects (p = 2 × 10−4 and p = 9 × 10−3, respectively). Age at first clinical signs and NSS accurately predicted treatment response in schizophrenia (area-under-curve: 77 ± 8%, p = 1 × 10−14). Conclusions Neurodevelopmental features such as NSS and age of clinical onset provide a means to identify patients who may require rapid treatment adaptation.
During atmospheric entry, super-/hypersonic vehicles cross distinct atmospheric layers characterized by large density variations and thus experience different flow regimes ranging from free molecular, transition, slip, to continuous regimes. Due to the distinct modeling strategy between these regimes and complex physical phenomena appearing near the vehicles (boundary-layer/shock interaction, base-flow recirculation, etc.), assessing their aerodynamic properties may be difficult. The present work focuses on supersonic flows around sharp-base geometries in both continuous and slip-flow regimes and aims at highlighting the influence of both rarefaction degree and base geometry on the vehicles’ aerodynamic features. For this purpose, three axisymmetric cone-cylinder geometries with right-angled, rounded, or flared rear parts are considered. Flow visualization, pressure, and drag measurements are carried out at Mach number [Formula: see text] and Knudsen numbers ranging from [Formula: see text] to [Formula: see text] in the supersonic rarefied MARHy wind tunnel. The experimental data are compared with numerical results of simulations performed with a continuous-flow Navier–Stokes ([Formula: see text]) solver and two rarefied flows codes: a discrete-ordinate Bhatnagar–Gross–Krook ([Formula: see text]) solver and a direct simulation Monte Carlo (SPARTA) solver. While the [Formula: see text] solver overestimates frictional drag as [Formula: see text] rises, the rarefied [Formula: see text] and SPARTA results show satisfactory agreement with experimental data. The latter numerical results highlight the main effects of rarefaction: as [Formula: see text] increases, shocks become more diffuse, skin friction strengthens (leading to a significant increase in drag coefficients), and the extent of the base-recirculation decreases. Regarding the aft-body geometry, its influence on the base recirculation vanishes with increasing [Formula: see text].
Decarbonization of energy production is key in today’s societies and nuclear energy holds an essential place in this prospect. Besides heavy-duty electricity production, other industrial and communal needs could be served by integrating novel nuclear energy production systems, among which are low-power nuclear devices, like small modular reactors (SMRs). The ELSMOR (towards European Licensing of Small Modular Reactors) European project addresses this topic as an answer to the Horizon 2020 Euratom NFRP-2018-3 call. The consortium includes 15 partners from eight European countries, involving research institutes, major European nuclear companies and technical support organizations. The 3.5-year project, launched in September 2019, investigates selected safety features of light-water (LW) SMRs with focus on licensing aspects. Providing a comprehensive compliance framework that regulators can adopt and operate, the licensing process of such SMRs could be optimized, helping their deployment. In this prospect, as a result of ELSMOR’s work, this article gives an overview of the specific issues that LW-SMRs may bring about in the different domains of nuclear safety, in terms of: • Methodological standpoints: safety goals, safety requirements, safety principles (defence-in-depth implementation); • Main safety functions of reactivity control, decay heat removal and confinement management; • Severe accident management; • Other safety issues particular to SMRs: use of shared systems; performing of multi-unit probabilistic safety assessment (PSA); spent fuel management, transport and disposal management. In this article, adequate methodologies are developed to deal with these issues and to help assess the safety of LW-SMRs. This work gives a precious synthesis of the safety assessment issues of LW-SMRs and of the associated methodologies developed in the context of the ELSMOR European project.
This paper summarized the efforts performed to understand decay heat estimation from existing spent nuclear fuel (SNF), under the auspices of the Working Party on Nuclear Criticality Safety (WPNCS) of the OECD Nuclear Energy Agency. Needs for precise estimations are related to safety, cost, and optimization of SNF handling, storage, and repository. The physical origins of decay heat (a more correct denomination would be decay power) are then introduced, to identify its main contributors (fission products and actinides) and time-dependent evolution. Due to limited absolute prediction capabilities, experimental information is crucial; measurement facilities and methods are then presented, highlighting both their relevance and our need for maintaining the unique current full-scale facility and developing new ones. The third part of this report is dedicated to the computational aspect of the decay heat estimation: calculation methods, codes, and validation. Different approaches and implementations currently exist for these three aspects, directly impacting our capabilities to predict decay heat and to inform decision-makers. Finally, recommendations from the expert community are proposed, potentially guiding future experimental and computational developments. One of the most important outcomes of this work is the consensus among participants on the need to reduce biases and uncertainties for the estimated SNF decay heat. If it is agreed that uncertainties (being one standard deviation) are on average small (less than a few percent), they still substantially impact various applications when one needs to consider up to three standard deviations, thus covering more than 95% of cases. The second main finding is the need of new decay heat measurements and validation for cases corresponding to more modern fuel characteristics: higher initial enrichment, higher average burnup, as well as shorter and longer cooling time. Similar needs exist for fuel types without public experimental data, such as MOX, VVER, or CANDU fuels. A third outcome is related to SNF assemblies for which no direct validation can be performed, representing the vast majority of cases (due to the large number of SNF assemblies currently stored, or too short or too long cooling periods of interest). A few solutions are possible, depending on the application. For the final repository, systematic measurements of quantities related to decay heat can be performed, such as neutron or gamma emission. This would provide indications of the SNF decay heat at the time of encapsulation. For other applications (short- or long-term cooling), the community would benefit from applying consistent and accepted recommendations on calculation methods, for both decay heat and uncertainties. This would improve the understanding of the results and make comparisons easier.
The development of immunotherapies has proved to be clinically encouraging to re-establish the immune function modified by the expression of immune inhibitory molecules in tumors. However, there are still patients with poor survival rates following treatment. The elucidation of molecular mechanisms triggered by the neo-expression of particular IC in tumors would constitute a major step toward better understanding tumor evolution and would help to design future clinical protocols. To this end, we investigate the modifications triggered by the neo-expression of the immune checkpoints HLA-G in ccRCC tumor cells. We demonstrate, for the first time, that HLA-G modifies key genes implicated mainly in tumor development, angiogenesis, calcium flow and mitochondria dynamics. The involvement of HLA-G on the expression of genes belonging to these pathways such as ADAM-12, NCAM1 and NRP1 was confirmed by the CRISPR/Cas9-mediated edition of HLA-G. The data reveal multifaceted roles of HLA-G in tumor cells which are far beyond the well-known function of HLA-G in the immune anti-tumor response. This warrants further investigation of HLA-G and these new partners in tumors of different origin so as to propose future new treatments to improve health patient’s outcome.
Institution pages aggregate content on ResearchGate related to an institution. The members listed on this page have self-identified as being affiliated with this institution. Publications listed on this page were identified by our algorithms as relating to this institution. This page was not created or approved by the institution. If you represent an institution and have questions about these pages or wish to report inaccurate content, you can contact us here.
5,470 members
Pierre Parot
  • Direction des Sciences du Vivant (DSV)
Loic Martin
  • Medicines and Healthcare Technologies (DMTS)
Önder Gürcan
  • Laboratory of Research on Software-intensive Technologies (LIST)
Information
Address
Gif-sur-Yvette, France
Head of institution
François JACQ