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YEAST  

Gene Co-expression Network Analysis 

 R Tutorial 
Steve Horvath 

Correspondence: shorvath@mednet.ucla.edu,   http://www.ph.ucla.edu/biostat/people/horvath.htm 
 
This R tutorial describes how to carry out a gene co-expression network analysis with the R 
software. We show how to construct unweighted networks using hard thresholding and how to 
construct weighted networks using soft thresholding. 
The network construction is conceptually straightforward: nodes represent genes and nodes are 
connected if the corresponding genes are significantly co-expressed across appropriately chosen 
tissue samples. Here we study networks that can be specified with the following adjacency matrix: 
A=[aij] is symmetric with entries in [0,1]. By convention, the diagonal elements are assumed to be 
zero. For unweighted networks, the adjacency matrix contains binary information (connected=1, 
unconnected=0). In weighted networks the adjacency matrix contains weights. 
To cite this tutorial or the statistical methods please use 

1. Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-

Expression Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 

4: No. 1, Article 17 Technical Report and software code at: 
www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork 

More details on the biological results can be found in the following reference.  

• Carlson MRJ, Zhang B, Fang Z, Mischel P, Horvath S, Nelson SF (2006) Gene 

Connectivity, Function, and Sequence Conservation: Predictions from Modular Yeast Co-

Expression Networks. BMC Genomics 2006, 7:40 (3). 

The following theoretical reference explores the meaning of coexpression network analysis 

• Horvath S, Dong J (2008) Geometric Interpretation of Gene Co-Expression Network 

Analysis. PloS Computational Biology. 4(8): e1000117. PMID: 18704157 

The WGCNA R package is described in 

• Langfelder P, Horvath S (2008) WGCNA: an R package for Weighted Correlation Network 

Analysis. BMC Bioinformatics. 2008 Dec 29;9(1):559. PMID: 19114008 

For the generalized topological overlap matrix as applied to unweighted networks see 

• Yip A, Horvath S (2007) Gene network interconnectedness and the generalized topological 

overlap measure. BMC Bioinformatics 8:22 
 

Microarray DATA 
To demonstrate our methods, we apply them to gene co-expression networks constructed from a 
yeast microarray data set. These yeast microarray data record gene expression levels during 
different stages of cell cycles in yeasts.  
The yeast data are described in the following reference. 

Eisen, M. and Spellman, P. and Brown, P. and Botstein, D. (1998) 

Cluster Analysis and Display of Genome-wide Expression Patterns, 

PNAS, vol 95 (25) 14863-14868. 

Actually our data set represents a subset of genes and samples from the original data set. 
We omitted genes with a lot of missing values and with low variance across the 44 yeast samples. 
The resulting data set contains 4000 different genes. 
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Prediction of "Essential" yeast genes.  
For each yeast gene, it is known whether or not is is essential for yeast survival based on gene 
knock-out experiments. This binary information is encoded in the variable "essentiality" which 
equals 1 if the gene is essential otherwise 0. 
It has been reported independently by many research groups, genes with high connectivity (are 
more likely to be essential. We will confirm this finding as part of this tutorial. 
We refer to essentiality as a measure of "gene significance". Abstractly speaking, gene significance 
is any quantitative measure that specifies how biologically significant a gene is. One goal of 
network analysis is to relate the measure of gene significance (here essentiality) to intramodular 
connectivity. 
 

Module Construction 
To group genes with coherent expression profiles into modules, we use average linkage hierarchical 
clustering, which uses the topological overlap measure as dissimilarity.  
The topological overlap of two nodes reflects their similarity in terms of the commonality of the 
nodes they connect to, see [Ravasz et al 2002, Yip and Horvath 2007]. 
Once a dendrogram is obtained from a hierarchical clustering method, we need to choose a height 
cutoff in order to arrive at a clustering. It is a judgement call where to cut the tree branches. 
The height cut-off can be found by inspection: a height cutoff value is chosen in the dendrogram 
such that some of the resulting branches correspond to the discrete diagonal blocks 
(modules) in the TOM plot. In general, we recommend to use the function cutreeDynamic for 
branch cutting (Langfelder and Horvath 2008). But here we will use the static (fixed) cutree 
method. 
 

 

 

# Absolutely no warranty on the code. Please contact SH with suggestions. 
 
# CONTENTS   

# This document contains function for carrying out the following tasks 

# A) Assessing scale free topology and choosing the parameters of the adjacency 

function 

#    using the scale free topology criterion (Zhang and Horvath 05) 

# B) Computing the topological overlap matrix  

# C) Defining gene modules using clustering procedures 

# D) Summing up modules using their first principal components (first eigengene) 

# E) Relating a measure of gene significance to the modules  

# F) Carrying out a within module analysis (computing intramodular connectivity)  

#    and relating intramodular connectivity to gene significance. 

# G) Miscellaneous other functions, e.g. for computing the cluster coefficient. 
 
# Downloading the R software 
# 1) Go to http://www.R-project.org, download R and install it on your computer 
 
# After installing R, you need to install several additional R library packages:  
# For example to install Hmisc, open R,  
# go to menu "Packages\Install package(s) from CRAN",  
# then choose Hmisc. R will automatically install the package.   
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# When asked "Delete downloaded files (y/N)? ", answer "y". 
# Do the same for some of the other libraries mentioned below. But note that  
# several libraries are already present in the software so there is no need to re-install them. 
 
# To get this tutorial and data files, go to the following webpage 
# www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork 
# Download the zip file containing:  
# 1) R function file: "NetworkFunctions.txt", which contains several R functions  
#  needed for Network Analysis.  
# 2) A test data file: "YEASTCellCycle4000.csv" 
# 3) Of course, this file: "YeastTutorialHorvath.txt" 
 
# Unzip all the files into the same directory 
 
## Please copy and paste the following script into the R session. 
## Text after "#" is a comment and is automatically ignored by R. 
 

 

# read in the R libraries 
library(MASS) # standard, no need to install 
library(class) # standard, no need to install 
library(cluster) 
library(impute)# install it for imputing missing value 
 
 

# Download the WGCNA library as a .zip file from 

http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA/ 

and choose "Install package(s) from local zip file" in the packages tab 

 

library(WGCNA) 
options(stringsAsFactors=F) 
 

# note the backslashes / in the following path 

 

setwd("C:/Documents and Settings/Steve Horvath/My 

Documents/ADAG/LinSong/NetworkScreening/") 

# read in the microarray data 

dat0 = read.csv("YEASTCellCycle4000.csv",header=T, row.names=1) 

 

# the following gene summary file contains information on the yeast genes 

datSummary=dat0[,1:7] 

# the column essentiality indicates which gene is essential for yeast survival 

table(datSummary$essentiality) 

# message: there are 645 essential genes 

 

# the following data frame contains 

# the gene expression data: columns are genes, rows are arrays (samples) 

 

datExpr = t(dat0[,8:51]) 

 

# This following code allow us to restrict our analysis  
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# to the most varying genes 

var1=function(x) var(x,na.rm=T) 

vargenes=apply(datExpr,2,var1) 

rankvar=rank(-vargenes) 

restVariance= rankvar< 4001 #i.e. we keep all genes. 

sum(restVariance) 

datExpr=datExpr[,restVariance] 

datSummary=datSummary[restVariance,] 

 

no.samples = dim(datExpr)[[1]] 

dim(datExpr) 

rm(dat0);gc() 

 

 

# To choose a cut-off value, we propose to use the Scale-free Topology Criterion (Zhang and  
# Horvath 2005).  Here the focus is on the linear regression model fitting index  
# (denoted below by scale.law.R.2) that  quantify the extent of how well a network  
# satisfies a scale-free topology. 
# The function PickSoftThreshold can help one to estimate the cut-off value  
# when using hard thresholding with the step adjacency function. 
# The first column (different from the row numbers) lists the soft threshold Power  
# The second column reports the resulting scale free topology fitting index R^2 (scale.law.R.2) 
# The third column reports the slope of the fitting line.  
# The fourth column reports the fitting index for the truncated exponential scale free model.  
# Usually we ignore it. 
# The remaining columns list the mean, median and maximum connectivity. 
# To a soft threshold (power) with the scale free topology criterion: 
# aim for reasonably high scale free R^2 (column 2), higher than say .80 
# and negative slope (around -1, col 4). 
# In practice, we pick the threshold by looking for a "kink" in the  
# relationship between R^2 and power, see below. 
 

# Now we produce the scale free topology fitting indices for different 
# soft thresholds (powers). It will be used to pick a soft threshold. 
powers1=c(seq(1,10,by=1),seq(12,20,by=2)) 
RpowerTable=pickSoftThreshold(datExpr, powerVector=powers1)[[2]] 
gc() 
 
 

Power scale.law.R.2  slope truncated.R.2 mean.k. median.k.   max.k. 

1      1        -0.096 -0.981         0.965 826.766   826.977 1309.071 

2      2         0.130 -1.706         0.977 263.707   257.186  594.227 

3      3         0.391 -1.906         0.989 105.166    98.339  313.387 

4      4         0.578 -2.010         0.982  48.521    42.651  181.108 

5      5         0.754 -1.864         0.998  24.883    20.178  111.531 

6      6         0.834 -1.855         0.996  13.843    10.224   72.876 

7      7         0.877 -1.889         0.994   8.218     5.471   52.074 

8      8         0.874 -1.923         0.986   5.145     3.113   38.754 

9      9         0.878 -1.924         0.984   3.367     1.816   29.504 

10    10         0.903 -1.874         0.994   2.288     1.091   22.878 

11    12         0.924 -1.742         0.993   1.157     0.418   14.355 

12    14         0.946 -1.638         0.996   0.644     0.176    9.822 

13    16         0.950 -1.604         0.995   0.386     0.080    7.453 

14    18         0.931 -1.584         0.968   0.245     0.037    5.792 

15    20         0.956 -1.534         0.982   0.163     0.018    4.658 
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gc() 
cex1=1 
par(mfrow=c(1,2)) 
plot(RpowerTable[,1], -sign(RpowerTable[,3])*RpowerTable[,2],xlab=" 
Soft Threshold (power)",ylab="Scale Free Topology Model Fit,signed R^2",type="n") 
text(RpowerTable[,1], -sign(RpowerTable[,3])*RpowerTable[,2], 
labels=powers1,cex=cex1,col="red") 
# this line corresponds to using an R^2 cut-off of h 
abline(h=0.85,col="red") 
plot(RpowerTable[,1], RpowerTable[,5],xlab="Soft Threshold (power)",ylab="Mean 
Connectivity", type="n") 
text(RpowerTable[,1], RpowerTable[,5], labels=powers1, cex=cex1,col="red") 
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# Note that at power=7, the curve has an elbow or kink, i.e. for this power the scale free topology  
# fit does not improve after increasing the power. This is why we choose beta1=7 
# Also the scale free topology criterion with a R^2 threshold of 0.85 would lead us to pick a power 
# of 7.  
Note that there is a natural trade-off between maximizing scale-free topology model fit (R^2) and 
maintaining a high mean number of connections: parameter values that lead to an R^2 value close 
to 1 may lead to networks with very few connections. Actually, we consider a signed 
version of the scale free topology fitting index. Since it is biologically implausible that a networks 
contains more hub genes than non-hub genes, we multiply R^2 with -1 if the slope of 
the regression line between log_{10}(p(k)) and log_{10}(k) is positive. 
 
 



 6 

# We use the following power for the power adjacency function. 
beta1=7 
Connectivity=softConnectivity(datExpr,power=beta1) 
# Let’s create a scale free topology plot. 
# The black curve corresponds to scale free topology and 
# the red curve corresponds to truncated scale free topology. 
par(mfrow=c(1,1)) 
scaleFreePlot(Connectivity, main=paste("soft threshold, power=",beta1), truncated=T);  
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#Module Detection 
# An important step in network analysis is module detetion. 
# Here we use methods that use clustering in combination with the topological 
# overlap matrix, see Yip and Horvath (2007) and Ravasz et al 2001. 
 

# This code allows one to restrict the analysis to the most connected genes, 

# which may speed up calculations when it comes to module detection. 

ConnectivityCut = 2001 # number of most connected genes that will be considered  

ConnectivityRank = rank(-Connectivity)  

restConnectivity = ConnectivityRank <= ConnectivityCut 

# thus our module detection uses the following number of genes 

sum(restConnectivity) 

 

# Now we restrict the adjacency matrix to the most connected genes 
ADJrest = adjacency(datExpr[,restConnectivity], power=beta1) 

 

# The following code computes the topological overlap matrix based on the  

# adjacency matrix. 

dissTOM=TOMdist(ADJrest) 

gc() 

 

# Now we carry out hierarchical clustering with the TOM matrix. Branches of the  
# resulting clustering tree will be used to define gene modules. 
hierTOM = hclust(as.dist(dissTOM),method="average"); 

par(mfrow=c(1,1)) 

plot(hierTOM,labels=F,sub="",xlab="") 

 

# According to our definition, modules correspond to branches of the tree. 
# The question is what height cut-off should be used? This depends on the  
# biology. Large heigth values lead to big modules, small values lead to small  
# but tight modules.  
# In reality, the user should use different thresholds to see how robust the findings are.  
 
# The function cutreeStaticColor colors each gene by the branches that 
# result from choosing a particular height cut-off. 
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# GREY IS RESERVED to color genes that are not part of any module. 
# We only consider modules that contain at least 125 genes. 
 
colorh1= cutreeStaticColor(hierTOM,cutHeight = 0.97) 
 

table(colorh1) 
 

colorh1 

    black      blue     brown     green      grey    purple       red turquoise    yellow  

       67       215       139        98       920        53        96       308       105 

 
#LET US NOW DEFINE THE "GENE SIGNIFICANCE", 
# which indicates whether or not the gene is essential for yeast survival based on knock-out 
#experiments. 
GeneSignificance=datSummary$essentiality[restConnectivity] 
par(mfrow=c(2,1), mar=c(2,4,2,2)) 
plot(hierTOM, main="", labels=F, xlab="", sub=""); 
plotColorUnderTree(hierTOM,colors=data.frame(colorh1,Essentiality= 
GeneSignificance)) 
 
 

 
 

COMMENTS:  
1) The colors are assigned based on module size. Turquoise (others refer to it as cyan) colors 

the largest module, next comes blue, next brown, etc. Just type table(colorh1) to figure out 
which color corresponds to what module size. 

2) The color band called essentiality indicates whether a gene is known to be essential (black) 
or not (white). 

3) The minimum module size is determine by the input parameter minSize of 
cutreeStaticColors. The default size is minSize=50. 

4) Here we choose a fixed height cut-off for cutting off branches. But we have also developed 
a more flexible method for cutting off branches that adaptively choose a different height for 
each branch. The resulting dynamic tree cutting algorithm (cutreeDynamic) is desccribed in 
Langfelder Zhang and Horvath (2008).  
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# An alternative view of this is the so called TOM plot that is generated by the  
# function TOMplot 
# Inputs:  TOM  distance measure, hierarchical (hclust) object, color  
 
# Warning: for large gene sets, this may take a while... 

TOMplot(dissTOM , hierTOM, colorh1, terrainColors=TRUE)  

 

 

 
#In the above, note that rows and columns are genes colored by module membership. 
#Note that modules correspond to squares along the diagonal. 
 
# We also propose to use classical multi-dimensional scaling plots for visualizing the network. 
#Here we chose 3 scaling dimensions 
cmd1=cmdscale(as.dist(dissTOM),3) 
pairs(cmd1, col=as.character(colorh1),  main="MDS plot") 
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# Here is a 3 D plot of the same scaling coordinates. 

par(mfrow=c(1,1), mar=c(4,3,2,3)+0.1) 

library(scatterplot3d) 

scatterplot3d(cmd1,color=colorh1,angle=250, 

xlab="Scaling Axis 1", ylab="Scaling Axis 2", zlab="Scaling Axis 3") 
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# The function verboseBarplot creates a bar plot  
# that shows whether modules are enriched with essential genes.  
# It also reports a Kruskal Wallis P-value. 
# The gene significance can be a binary variable or a quantitative variable.  
# also plots the 95% confidence interval of the mean 
par(mfrow=c(1,1)) 
verboseBarplot(GeneSignificance,colorh1,main="Module Significance ", 
col=levels(factor(colorh1)) ,xlab="Module" )  
 

black blue brown green grey pink red turquoise yellow

Module Significance   p= 1.5e-39

Module

G
e
n
e
S

ig
n
if
ic

a
n
c
e

0
.0

0
.2

0
.4

 

 
# Note that one module is highly enriched with essential genes. 
 
# To get a sense of how related the modules are one can summarize each module 
# by its first eigengene (referred to as principal components). 
# and then correlate these module eigengenes with each other. 
 
datME=moduleEigengenes(datExpr[,restConnectivity],colorh1)[[1]] 
 
# We define a dissimilarity measure between the module eigengenes that keeps track of the sign of 
the correlation between the module eigengenes. 
dissimME=1-(t(cor(datME, method="p")))/2 
 
hclustdatME=hclust(dist(dissimME), method="average" ) 
par(mfrow=c(1,1)) 
plot(hclustdatME, main="Clustering tree based on the module eigengenes of modules") 
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# Now we create scatter plots of the samples (arrays) along the module eigengenes. 
pairs(datME) 
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Compare this pairwise plot with the following correlation table between eigengenes. 
signif(cor(datME, use="p"), 2) 
 
 
            MEblack MEblue MEbrown MEgreen MEgrey MEpink MEred MEturquoise MEyellow 
MEblack       1.000 -0.390    0.12    0.36 -0.056  0.042 -0.42       0.130   -0.610 
MEblue       -0.390  1.000    0.30    0.50 -0.340 -0.085 -0.15       0.036    0.045 
MEbrown       0.120  0.300    1.00    0.23 -0.330  0.220 -0.41       0.590   -0.300 
MEgreen       0.360  0.500    0.23    1.00 -0.520  0.140 -0.58       0.230   -0.240 
MEgrey       -0.056 -0.340   -0.33   -0.52  1.000 -0.470  0.80      -0.770   -0.240 
MEpink        0.042 -0.085    0.22    0.14 -0.470  1.000 -0.34       0.440    0.280 
MEred        -0.420 -0.150   -0.41   -0.58  0.800 -0.340  1.00      -0.750    0.220 
MEturquoise   0.130  0.036    0.59    0.23 -0.770  0.440 -0.75       1.000    0.026 
MEyellow     -0.610  0.045   -0.30   -0.24 -0.240  0.280  0.22       0.026    1.000 

 
Message: the module eigengenes (first PC) of different modules may be highly correlated. 
WGCNA can be interpreted as a biologically motivated data reduction scheme that allows for 
dependency between the resulting components. Compare this to principal component analysis that 
would impose orthogonality between the components. 
Since modules may represent biological pathways there is no biological reason why modules 
should be orthogonal to each other. 
Aside: If you are interested in networks comprised of module eigengenes, the following article may 
be of interest: 
Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-
expression modules. BMC Systems Biology 2007, 1:54 
 
 
 
#To study how connectivity is related to mean gene expression or variance of gene expression  
# we create the following plot. 

mean1=function(x) mean(x,na.rm=T) 

var1=function(x) var(x,na.rm=T) 

meanExpr=apply( datExpr[,restConnectivity],2,mean1) 

varExpr=apply( datExpr[,restConnectivity],2,var1) 

par(mfrow=c(1,2)) 

plot(Connectivity[restConnectivity],meanExpr, col=colorh1, 

main="Mean(Expression) vs K") 

plot (Connectivity[restConnectivity],varExpr, col=colorh1, main="Var(Expression) 

vs K") 
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# The following produces heatmap plots for each module. 
# Here the rows are genes and the columns are samples. 
# Well defined modules results in characteristic band structures since the corresponding genes are  
# highly correlated. 
 
# The following produces heatmap plots for each module. 
# Here the rows are genes and the columns are samples. 
# Well defined modules results in characteristic band structures since the corresponding genes are  
# highly correlated. 
 
par(mfrow=c(2,1), mar=c(1, 2, 4, 1)) 
ClusterSamples=hclust(dist(datExpr[,restConnectivity] ),method="average")  
# for the first (turquoise) module we use 
which.module="turquoise" 
plot.mat(t(scale(datExpr[ClusterSamples$order,restConnectivity][,colorh1==which.module ]) 
),nrgcols=30,rlabels=T, clabels=T,rcols=which.module, 
main=which.module ) 
# for the second (blue) module we use 
which.module="blue" 
plot.mat(t(scale(datExpr[ClusterSamples$order,restConnectivity][,colorh1==which.module ]) 
),nrgcols=30,rlabels=T, clabels=T,rcols=which.module, 
main=which.module ) 

 
#For each module there should be a clear band structure, i.e. genes 

#corresponding to a given array (column) should have the same color. 

# The white bard represent missing values. 
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#Now we extend the color definition to all genes by coloring all non-module  
# genes grey. 
color1=rep("grey",sum(restVariance)) 

color1[restConnectivity]=as.character(colorh1) 

 

#Computation of the cluster coefficient 
# The cluster coefficient measures the cliquishness of a gene,  
# consult Zhang and Horvath, Horvath et al (2005) 
 

CC= clusterCoef(ADJrest) 

 

gc() 

 

# Now we plot cluster coefficient versus connectivity 

# for all genes 

par(mfrow=c(1,1)) 

plot(Connectivity[restConnectivity],CC,col=as.character(colorh1), 

,xlab="Connectivity",ylab="Cluster Coefficient" ) 

 

 
This compute the correlation between cluster coefficient and connectivity within 

each module. 
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by(data.frame(CC=CC, k=Connectivity[restConnectivity]), INDICES=colorh1,FUN=cor) 

 

colorh1: black 

          CC         k 

CC 1.0000000 0.4384517 

k  0.4384517 1.0000000 

------------------------------------------------------------------------  

colorh1: blue 

          CC         k 

CC 1.0000000 0.5432612 

k  0.5432612 1.0000000 

------------------------------------------------------------------------  

colorh1: brown 

          CC         k 

CC 1.0000000 0.2301026 

k  0.2301026 1.0000000 

------------------------------------------------------------------------  

colorh1: green 

            CC           k 

CC  1.00000000 -0.04967428 

k  -0.04967428  1.00000000 

------------------------------------------------------------------------  

colorh1: grey 

           CC          k 

CC 1.00000000 0.05520535 

k  0.05520535 1.00000000 

------------------------------------------------------------------------  

colorh1: purple 

          CC         k 

CC 1.0000000 0.6078187 

k  0.6078187 1.0000000 

------------------------------------------------------------------------  

colorh1: red 

          CC         k 

CC 1.0000000 0.5742447 

k  0.5742447 1.0000000 

------------------------------------------------------------------------  

colorh1: turquoise 

          CC         k 

CC 1.0000000 0.4474475 

k  0.4474475 1.0000000 

------------------------------------------------------------------------  

colorh1: yellow 

          CC         k 

CC 1.0000000 0.2852322 

k  0.2852322 1.0000000 

 

Comment: In most modules, we find a positive correlation between k and CC. 
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Constructing an unweighted network with HARD THRESHOLDING 
 

Based on the expression data, the absolute pair-wise (Pearson) correlation coefficient between the 
expression profiles of each pair of genes is calculated. Then, a network with each node 
representing one gene is constructed. An edge between two nodes is present if their absolute 
correlation coefficient exceeds a threshold tau=0.7.  We obtain the threshold tau by using the scale-
free criterion proposed by Zhang and Horvath (2005). 
 
 
# To construct an unweighted network (hard thresholding),  
# we consider the following vector of potential thresholds. 
 

thresholds1= c(seq(.1,.5, by=.1), seq(.55,.9, by=.05) ) 

 

# To choose a cut-off value, we propose to use the Scale-free Topology Criterion (Zhang and  
# Horvath 2005).  Here the focus is on the linear regression model fitting index  
# (denoted below by scale.law.R.2) that  quantify the extent of how well a network  
# satisfies a scale-free topology. 
# The function PickHardThreshold can help one to estimate the cut-off value  
# when using hard thresholding with the step adjacency function. 
# The first column lists the threshold ("cut"), 
# the second column lists the corresponding p-value based on the Fisher transform. 
# The third column reports the resulting scale free topology fitting index R^2. 
# The fourth column reports the slope of the fitting line.  
# The fifth column reports the fitting index for the truncated exponential scale free model.  
# Usually we ignore it. 
# The remaining columns list the mean, median and maximum connectivity. 
# To pick a hard threshold (cut) with the scale free topology criterion: 
# aim for high scale free R^2 (column 3), high connectivity (col 6)  
# and negative slope (around -1, col 4). 
 

RdichotTable=pickHardThreshold(datExpr, cutVector= thresholds1)[[2]] 
 

   Cut  p.value scale.law.R.2 slope. truncated.R.2  mean.k. median.k. max.k. 

1  0.10 5.13e-01        0.5520   8.05         0.824 2820.000      2850   3340 

2  0.20 1.88e-01        0.0616   1.62         0.705 1780.000      1820   2720 

3  0.30 4.53e-02       -0.0980  -0.42         0.809 1000.000      1010   2090 

4  0.40 6.48e-03        0.2740  -1.44         0.901  486.000       463   1440 

5  0.50 4.70e-04        0.5850  -1.90         0.944  199.000       160    898 

6  0.55 9.09e-05        0.6910  -1.86         0.962  117.000        83    663 

7  0.60 1.32e-05        0.7560  -1.79         0.958   65.500        37    466 

8  0.65 1.35e-06        0.8760  -1.62         0.988   34.500        14    314 

9  0.70 8.73e-08        0.9060  -1.52         0.993   16.600         4    196 

10 0.75 3.03e-09        0.8410  -1.56         0.968    7.250         1    123 

11 0.80 4.31e-11        0.8980  -1.36         0.982    2.680         0     64 

12 0.85 1.51e-13        0.9470  -1.23         0.961    0.797         0     32 

13 0.90 0.00e+00        0.9420  -1.25         0.964    0.146         0     17 

 

 
# Comment: Note that for a cut-off value (tau)=0.10 the scaling law R^2 equals 0.55, which seems 
#to be pretty high. However, the slope is positive, i.e. this would predict there are more genes with 
#high connectivity than there are genes with low connectivity. This is unbiological! 
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# This is the reason why we look at the signed R^2 value:  

#Signed R^2=-sign(RdichotTable[,4])*RdichotTable[,3] 
#Let’s plot the scale free topology model fitting index (R^2) versus the cut-off tau. However, the 
#R^2 values of those cut-offs that lead to a negative slope have been pre-multiplied by -1. 
 

cex1=0.7 

gc() 

par(mfrow=c(1,2)) 

plot(RdichotTable[,1], -sign(RdichotTable[,4])*RdichotTable[,3],xlab="Hard 

Threshold tau",ylab="Scale Free Topology Model Fit,signed R^2", type="n") 

text(RdichotTable[,1], -sign(RdichotTable[,4])*RdichotTable[,3] , 

labels=thresholds1,cex=cex1) 

# this line corresponds to using an R^2 cut-off of h 

abline(h=0.85,col="red") 

plot(RdichotTable[,1], RdichotTable[,6],xlab="Hard Threshold tau",ylab="Mean 

Connectivity", type="n") 

text(RdichotTable[,1], RdichotTable[,6] , labels=thresholds1, cex=cex1) 
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# Based on this analysis, we would choose the cut value (tau) of 0.65 for the correlation matrix 
#since a) the scale law R^2 crosses 0.85, b) the slope looks OK (negative and around -1), and  
# c) the mean number of connections is reasonably high.  
# Later we discuss how robust our findings are with respect to this choice. 
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AdjMatHARD=abs(corhelp[restConnectivity,restConnectivity])>0.65+0.0 

diag(AdjMatHARD)=0 

cluster.coefrestHARD= ClusterCoef.fun(AdjMatHARD) 

ConnectivityHARD= apply(AdjMatHARD,2,sum) 

par(mfrow=c(1,1)) 

plot(ConnectivityHARD,cluster.coefrestHARD,col=as.character(colorh1),xlab="Conne

ctivity",ylab="Cluster Coefficient" ) 
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# Now we correlate the cluster coefficient with connectivity by module in the unweighted network  
restHub=ConnectivityHARD>50 

by(data.frame(CC= cluster.coefrestHARD[restHub], k=ConnectivityHARD[restHub]), 

INDICES=colorh1[restHub],FUN=cor) 

 
colorh1[restHub]: black 

           CC          k 

CC  1.0000000 -0.7565848 

k  -0.7565848  1.0000000 

------------------------------------------------------------  

colorh1[restHub]: blue 

           CC          k 

CC  1.0000000 -0.5948222 

k  -0.5948222  1.0000000 

------------------------------------------------------------  

colorh1[restHub]: brown 

           CC          k 

CC  1.0000000 -0.5767991 

k  -0.5767991  1.0000000 

------------------------------------------------------------  

colorh1[restHub]: green 

          CC         k 

CC  1.000000 -0.736881 

k  -0.736881  1.000000 

------------------------------------------------------------  

colorh1[restHub]: grey 

           CC          k 

CC  1.0000000 -0.1226995 

k  -0.1226995  1.0000000 

------------------------------------------------------------  

colorh1[restHub]: purple 

           CC          k 

CC  1.0000000 -0.7748994 

k  -0.7748994  1.0000000 

------------------------------------------------------------  

colorh1[restHub]: red 

           CC          k 

CC  1.0000000 -0.5555478 

k  -0.5555478  1.0000000 

------------------------------------------------------------  

colorh1[restHub]: turquoise 

           CC          k 

CC  1.0000000 -0.6737847 

k  -0.6737847  1.0000000 

------------------------------------------------------------  

colorh1[restHub]: yellow 

          CC         k 

CC  1.000000 -0.790202 

k  -0.790202  1.000000 

 

 

 
# Comments: for unweighted networks there is an inverse relationship between cluster coefficient 
and connectivity. This is can be quite different for weighted networks Zhang and Horvath (2005). 
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# The function intramodularConnectivity computes the whole network connectivity kTotal, 
# the within module connectivity (kWithin). kOut=kTotal-kWithin and  
# and kDiff=kIn-kOut=2*kIN-kTotal 
 

ConnectivityMeasures=intramodularConnectivity(ADJrest,colorh1) 

 

names(ConnectivityMeasures) 

[1] "kTotal"  "kWithin" "kOut"    "kDiff" 

 

# The following plots who the gene significance (essentiality)  

# vs intramodular connectivity 

 

 

colorlevels=levels(factor(colorh1)) 

par(mfrow=c(3,3),mar=c(5, 4, 4, 2) + 0.1) 

for (i in c(1:length(colorlevels) ) ) { 

whichmodule=colorlevels[[i]];restrict1=colorh1==whichmodule 

verboseBarplot(ConnectivityMeasures$kWithin[restrict1], 

GeneSignificance[restrict1],col=colorh1[restrict1],main= 

paste(whichmodule),xlab="Gene Significance",ylab="Intramodular k") 

} 
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# Now we want to see how the correlation between kWithin and gene essentiality changes for 
#different SOFT thresholds (powers). Restricted to turquoise module genes. 
# Also we compare the 2 different connectivity measures. 
par(mfrow=c(1,1)) 

datconnectivitiesSoft=data.frame(matrix(666,nrow=sum(colorh1==whichmodule),ncol=

length(powers1))) 

names(datconnectivitiesSoft)=paste("kWithinPower",powers1,sep="") 

for (i in c(1:length(powers1)) ) { 

datconnectivitiesSoft[,i]=apply(abs(corhelp[colorh1==whichmodule, 

colorh1==whichmodule])^powers1[i],1,sum)} 

SpearmanCorrelationsSoft=signif(cor(GeneSignificance[ colorh1==whichmodule], 

datconnectivitiesSoft, method="s",use="p")) 

 
plot(powers1, SpearmanCorrelationsSoft, main="Cor(Connectivity,Gene 

Significance) vs Soft Thresholds (powers)",ylab="Spearman Correlation(Gene 

Significance,k.in)",xlab="Power 

beta",type="n",ylim=range(c(SpearmanCorrelationsSoft),na.rm=T) 

) 

text(powers1, SpearmanCorrelationsSoft,labels=powers1,col="red") 

# this draws a vertical line at the tau that was chosen by the  

# scale free topology criterion. 

abline(v=7,col="red") 
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#Comment: Very high and very low values of the soft threshold lead seem to decrease the 
#biological signal. It is remarkable that the scale free topology criterion picked a good power. 
 
# Comments/Results  

• We find that soft thresholding leads to results that are far more robust with respect to the 
choice of the adjacency function parameter. 
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• We find that soft thresholding is superior to hard thresholding especially for low values of 
the scale free topology R^2. 

• In our opinion, soft centrality (connectivity) measures are better than hard measures 
because they are relatively robust with respect to the parameter of the adjacency function. 
For soft thresholding even choosing a power of beta=1 leads to a fairly good correlation. In 
contrast, choosing a hard threshold of tau=0.2 leads to a much reduced biological signal. 
Robustness is a very attractive property in this type of analysis since picking parameters of 
the adjacency function is rather ad-hoc. 

• The Scale free topology criterion leads to estimates of the adjacency function that often 
have good biological signal. 

 
 

 
APPENDIX: HARD THRESHOLDING and Unweighted Networks 
 

# Now we carry out hard thresholding using tau=0.65 
 

ADJhardrest = I(abs(cor(datExpr[,restConnectivity], use="p"))>0.65)+0.0 

 

# The following code computes the topological overlap matrix based on the  

# adjacency matrix. 

dissTOM2=TOMdist(ADJhardrest) 

gc() 

 

# Now we carry out hierarchical clustering with the TOM matrix. Branches of the  
# resulting clustering tree will be used to define gene modules. 
 
hierGTOM2 = hclust(as.dist(dissTOM2),method="average"); 

par(mfrow=c(1,1)) 

plot(hierGTOM2,labels=F) 
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# By our definition, modules correspond to branches of the tree. 
 

# The function modulecolor2 colors each gene by the branches that 

# result from choosing a particular height cut-off. 

# GREY IS RESERVED to color genes that are not part of any module. 

colorh2= cutreeStaticColor(hierGTOM2, cutHeight=.75) 

 

table(colorh2,colorh1) 

 

par(mfrow=c(4,1), mar=c(2,2,2,1)) 

plot(hierTOM, main="Soft TOM Measure", labels=F, xlab="", sub=""); 

plotColorUnderTree(hierTOM,colors=colorh1) 

title("Colored by soft modules") 

plotColorUnderTree(hierTOM,colorh2) 

title("Colored by hard modules") 

plotColorUnderTree(hierTOM,GeneSignificance) 

title("Colored by essentiality") 
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# In the above, the first plot is the tree and the second plot shows the  
# corresponding branch colors.  
# Message: module assignment is highly preserved between hard and sof thresholding. 
The third row indicates which genes are essential (black). 
 
# An alternative view of this is the so called TOM plot that is generated by the  
# function TOMplot 
# Inputs:  TOM  distance measure, hierarchical (hclust) object, color  
 
 

# Warning: for large gene sets, say more than 2000 genes this may take a while... 

TOMplot(dissTOM2 , hierGTOM2, colorh1)  
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Comment: modules are highly preserved between soft and hard thresholding. 
 
 
# Now we want to see how the correlation between kWithin and essentiality  
# changes for different hard threshold values tau within the turquoise module. 
 

corhelp=cor(datExpr[,restConnectivity],use="pairwise.complete.obs") 

whichmodule="turquoise" 

# the following data frame contains the intramodular connectivities  

# corresponding to different hard thresholds 

datconnectivitiesHard=data.frame(matrix(666,nrow=sum(colorh1==whichmodule),ncol=

length(thresholds1))) 

names(datconnectivitiesHard)=paste("kWithinTau",thresholds1,sep="") 

for (i in c(1:length(thresholds1)) ) { 

datconnectivitiesHard[,i]=apply(abs(corhelp[colorh1==whichmodule, 

colorh1==whichmodule])>=thresholds1[i],1,sum)} 

SpearmanCorrelationsHard=signif(cor(GeneSignificance[ colorh1==whichmodule], 

datconnectivitiesHard, method="s",use="p")) 
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# Now we compare the performance of the connectivity measures k.in across different hard 
#thresholds when it comes to predicting  prognostic genes in the turquoise module 
 

par(mfrow=c(1,1), mar=c(5, 4, 4, 2) +0.1) 

plot(thresholds1, SpearmanCorrelationsHard, main=" 

Cor(Connectivity,Gene Significance) vs Hard Thresholds",ylab="Spearman 

Correlation(Gene Significance,Connectivity)",xlab="Threshold tau", type="n", 

ylim=range(c(SpearmanCorrelationsHard),na.rm=T)) 

text(thresholds1, SpearmanCorrelationsHard,labels=thresholds1,col="black") 

# this draws a vertical line at the tau that was chosen by the  

# scale free topology criterion. 

abline(v=0.65,col="red") 
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#Note that very high or very small threshold values lead to a small correlation, 
#i.e. a diminished biological signal. The red line corresponds to the threshold that was picked using 
#the scale free topology criterion. It is remarkable that the scale free topology criterion picked the 
#threshold that leads to the most significant correlation between node #connectivity and gene 
#significance. 
 
# The following plot relates Spearman Correlation(kIn, Gene Significance) to scale free  
# topology R^2 for different hard and soft powers. 
library(splines) 

knots1=c(.85) 

par(mfrow=c(1,1)) 

x1=-sign(RdichotTable[,4])*RdichotTable[,3] 

y1= (as.vector(SpearmanCorrelationsHard)) 

# spline fit 

bs1=lm(y1~bs(x1,knots=knots1,Connectivity=3)) 

xpred1=seq(min(x1),max(x1),length=100) 

x2=-sign(RpowerTable[,3])*RpowerTable[,2] 

y2= (as.vector(SpearmanCorrelationsSoft)) 

bs2=lm(y2~bs(x2, knots=knots1,Connectivity=3)) 

xpred2=seq(min(x2),max(x2),length=100) 

plot(x1,y1,type="n",ylim=c(0.24,max(c(y1,y2))),xlim=c(0,1), 
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xlab="signed scale free topology R^2", ylab="Spearman Cor(kIn, Gene 

Significance)") 

text(x1, y1,col="black",label= as.character(thresholds1),cex=.7 ) 

points(x2,y2,type="n") 

text(x2, y2,col="red",labels= as.character(powers1),cex=.7); 

lines(xpred1,predict(bs1,data.frame(x1=xpred1 )  ),col="black",lwd=2) 

lines(xpred2,predict(bs2,data.frame(x2=xpred2 )  ),col="red",lwd=2) 
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APPENDIX: Using "closeness" to an essential turquoise hub gene to show that soft thresholding is 
superior to hard thresholding. 
 

#Let us now find the essential gene in turquoise module that has the highest connectivity 
 

# Don’t even try to understand this code, just trust it... 

indexset=c(1:dim(ConnectivityMeasures)[[1]])[GeneSignificance==1 & 

is.element(colorh1,c("turquoise")) ] 

c(1:dim(ConnectivityMeasures)[[1]])[ GeneSignificance==1 & 

is.element(colorh1,c("turquoise")) & 

ConnectivityMeasures$kWithin==max(ConnectivityMeasures$kWithin[indexset]) ] 

 

# This yields that gene 1422 is the most highly connected, essential gene in the  

#turquoise module. 

 

colorh1[1422] 

ConnectivityMeasures[1422,] 

 

# IDEA: we will compare different closeness measure (adjacency matrices and  
# topological overlap matrices for different hard and soft thresholds) that relate  
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# gene 1422 to other turquoise genes or other genes in the network. 
# We would expect that the closer a gene is to gene 1422, the more likely it is that it will be 
#essential itself. Thus there should be a relationship between closeness and essentiality. 
# We measure this relationship with the C-index (area under the ROC curve) 
 

# The following vector will contain the C-index between closeness and 

# essentiality for turquoise module genes only. 

HardCindex=rep(666,length(thresholds1)) 

for (i in c(1:length(thresholds1)) ){ 

 

# The function TOMdistROW computes the TOM distance of a gene (node) 

# with that of all other genes in the network. 

# The first entry is an integer that specifies which row of the adjacency matrix 

# corresponds to the gene of interest. 

# Output=vector of TOM distances to the gene of interest. 

TomVector=1-

TOMdistROW(1422,abs(corhelp[restConnectivity,restConnectivity])>thresholds1[i]) 

HardCindex[i]=rcorr.cens(c(TomVector[is.element(colorh1,c("turquoise"))]), 

datSummary$essentiality 

[restConnectivity][is.element(colorh1,c("turquoise"))])[[1]]   

  } 

 
# Same for soft thresholding (weighted networks). 
SoftCindex=rep(666,length(powers1)) 

for (i in c(1:length(powers1)) ){ 

TomVector=1-

TOMdistROW(1422,abs(corhelp[restConnectivity,restConnectivity])^powers1[i]) 

SoftCindex[i]=rcorr.cens(c(TomVector[is.element(colorh1,c("turquoise"))]), 

datSummary$essentiality 

[restConnectivity][is.element(colorh1,c("turquoise"))])[[1]]   

  } 
 

# Plots that sum up our studies for hard and soft thresholds 
par(mfrow=c(1,2)) 

cex1=.7 

range1=range(c(HardCindex, SoftCindex)) 

plot(thresholds1,HardCindex, main=paste("Hard, C-index,turquoise, max=", 

signif(max(HardCindex),2)), type="n",ylab="C.index(Closeness to gene, gene 

significance)",xlab="Hard Thresholds tau",ylim=range1) 

text(thresholds1,HardCindex, labels=thresholds1, col="black",cex=cex1) 

plot(powers1,SoftCindex, main=paste("Soft, C-index,turquoise, max=", 

signif(max(SoftCindex),2)),type="n", ylab="C.index(Closeness to gene, gene 

significance)",xlab="Soft Thresholds beta", ylim=range1) 

text(powers1,SoftCindex,  labels=powers1, col="red" ,cex=cex1) 
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Comment: Again we find that the scale free topology criterion leads to networks whose "closeness" 
measure  based on the TOM dissimilarity has approximately an optimal biological signal when 
considering the turquoise module genes. Note that on average the soft thresholding approach (right 
hand side) leads to a higher C-index, i.e. a larger biological signal. 
The soft thresholding approach leads to findings that are much more robust with respect to the 
choice of the adjacency function parameter (here the power). In contrast, the hard thresholding 
approach is less robust with respect to the choice of the adjacency function parameter tau. 
 
 
 
 

# Let’s compare hard thresholding to soft thresholding directly. 
# The following scatter plot relates the C-index to the scale free topology #fitting index (R^2) for 
different hard and soft thresholds. 
 
par(mfrow=c(1,1)) 

cex1=.7 

plot(-sign(RdichotTable[,4])*RdichotTable[,3], 

HardCindex,type="n",ylim=c(0.5,.7), 

xlab="signed scale free topology R^2", ylab="C.index(Closeness to gene 1422, 

Gene Significance)") 

text(-sign(RdichotTable[,4])*RdichotTable[,3], HardCindex,col="black", 

label= as.character(RdichotTable[,1]),cex=cex1 ) 

points(-sign(RpowerTable[,3])*RpowerTable[,2], SoftCindex, 

col="red",pch= as.character(RpowerTable[,1]) ,cex=cex1) 
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Comments  

• overall soft thresholding leads to a "closeness" measure that contains more biological signal 
than that of hard thresholding.  

• The findings for soft thresholding are relatively robust with respect ot the choice of the 
power. In contrast, the findings of hard thresholding are less robust. 

• the scale free topology criterion leads to nearly optimal performance for both the weighted 
and unweighted networks.\ 

 

 

THE END:  
To cite the code and methods in this manual, please use 

Bin Zhang and Steve Horvath (2005) "A General Framework for Weighted Gene Co-Expression 
Network Analysis", Statistical Applications in Genetics and Molecular Biology: Vol. 4: No. 1, 
Article 17  
 


